- Ranger program
The Ranger program was a series of
unmanned space mission s by theUnited States in the 1960s whose objective was to obtain the first close-up images of the surface of theMoon . The Ranger spacecraft were designed to collide with the lunar surface, returning imagery until they were destroyed upon impact.Ranger was originally designed, beginning in 1959, in three distinct phases, called "blocks". Each block had different mission objectives and progressively more advanced system design. The
JPL mission designers planned multiple launches in each block, to maximize the engineering experience and scientific value of the mission and to assure at least one successful flight. Total research, development, launch, and support costs for the Ranger series of spacecraft (Rangers 1 through 9) was approximately $170 million.The Ranger spacecraft
Each Ranger spacecraft had six cameras on board. The cameras were fundamentally the same with differences in exposure times, fields of view, lenses, and scan rates. The camera system was divided into two channels, P (partial) and F (full). Each channel was self-contained with separate power supplies, timers, and transmitters. The F-channel had two cameras: the wide-angle A-camera and the narrow angle B-camera. The P-channel had four cameras: P1 and P2 (narrow angle) and P3 and P4 (wide angle). The final F-channel image was taken between 2.5 and 5 seconds before impact (altitude about 5 km) and the last P-channel image 0.2 to 0.4 seconds before impact (altitude about 600 m). The images provided better resolution than was available from Earth based views by a factor of 1000.
Mission list
Block 1 missions
*
Ranger 1 , launched23 August 1961 , lunar prototype, launch failure
*Ranger 2 , launched18 November 1961 , lunar prototype, launch failureBlock 1, consisting of two spacecraft launched into Earth orbit in 1961, was intended to test the Atlas/Agena launch vehicle and spacecraft equipment without attempting to reach the Moon.
Most elements of spacecraft technology taken for granted today were untested before Ranger. Perhaps the most important of these was three-axis attitude stabilization, meaning that the spacecraft is fixed in relation to space instead of being stabilized by spinning. This would permit pointing large solar panels at the Sun, a large antenna at Earth, and cameras and other directional scientific sensors at their appropriatetargets. Rocket propulsion carried aboard the spacecraft was another critically important new technology, needed for accurate targeting at the Moon or distant planets.
In addition, two-way communication and closed-loop tracking, requiring spacecraft and ground system development, and the use of on-board computing and sequencing combined with commands from the ground, all had to be developed and tried out in flight. Unfortunately, problems with the early version of the launch vehicle left
Ranger 1 andRanger 2 in short-lived, low-Earth orbits in which the spacecraft could not stabilize themselves, collect solar power, or survive for long. In1962 , JPL utilized the Ranger 1 and Ranger 2 design for the failedMariner 1 and successfulMariner 2 deep-space probes to Venus.Block 2 missions
*
Ranger 3 , launched26 January 1962 , lunar probe, spacecraft failed, missed moon
*Ranger 4 , launched23 April 1962 , lunar probe, spacecraft failed, impact
*Ranger 5 , launched18 October 1962 , lunar probe, spacecraft failed, missedBlock 2 of the Ranger project launched three spacecraft to the Moon in 1962, carrying a TV camera, a radiation detector, and a seismometer in a separate capsule slowed by a rocket motor and packaged to survive its low-speed impact on the Moon’s surface. The three missions together demonstrated good performance of the Atlas/Agena B launch vehicle and the adequacy of the spacecraft design, but unfortunately not all on the same attempt.
Ranger 3 was launched into deep space, but an inaccuracy put it off course and it missed the Moon entirely.Ranger 4 had a perfect launch, but the spacecraft was completely disabled. The project team tracked the seismometer capsule to impact just out of sight on the lunar far side, validating the communications and navigation system.Ranger 5 missed the Moon and was disabled. No significant science information was gleaned from these missions. The craft weighed 331 kg.Around the end of Block 2, it was discovered that a type of diode used in previous missions produced problematic gold-plate flaking in the conditions of space. This may have been responsible for some of the failures. [http://history.nasa.gov/SP-480/ch8.htm]
Block 3 missions
*
Ranger 6 , launched30 January 1964 , lunar probe, impact, cameras failed
*Ranger 7
**Launched28 July 1964
**Impacted Moon31 July 1964 at 13:25:49 UT
**Latitude 10.35 S, Longitude 339.42 E -Mare Cognitum
*Ranger 8
**Launched17 February 1965
**Impacted Moon20 February 1965 at 09:57:37 UT
**Latitude 2.67 N, Longitude 24.65 E -Mare Tranquillitatis (Sea of Tranquility)
*Ranger 9
**Launched21 March 1965
**Impacted Moon24 March 1965 at 14:08:20 UT
**Latitude 12.83 S, Longitude 357.63 E -Alphonsus crater Ranger's Block 3 embodied four launches in 1964-65. These spacecraft boasted a television instrument designed to observe the lunar surface during the approach; as the spacecraft neared the Moon, they would reveal detail smaller than the best Earth telescopes could show, and finally details down to dishpan size. The first of the new series,
Ranger 6 , had a flawless flight, except that the television system was disabled by an in-flight accident and could take no pictures.The next three Rangers, with a redesigned television, were completely successful.
Ranger 7 photographed its way down to target in a lunar plain, soon namedMare Cognitum , south of the crater Copernicus. It sent more than 4,300 pictures from six cameras to waiting scientists and engineers. The new images revealed that craters caused by impact were the dominant features of the Moon's surface, even in the seemingly smooth and empty plains. Great craters were marked by small ones, and the small with tiny impact pockmarks, as far down in size as could be discerned—about 50 centimeters (16 inches). The light-colored streaks radiating from Copernicus and a few other large craters turned out to be chains and nets of small craters and debris blasted out in the primary impacts.In February 1965,
Ranger 8 swept an oblique course over the south ofOceanus Procellarum andMare Nubium , to crash inMare Tranquillitatis whereApollo 11 would land 4½ years later. It garnered more than 7,000 images, covering a wider area and reinforcing the conclusions from Ranger 7. About a month later,Ranger 9 came down in the 90 km diameter (55 mile) crater Alphonsus. Its 5,800 images, nested concentrically and taking advantage of very low-level sunlight, provided strong confirmation of the crater-on-crater, gently rolling contours of the lunar surface.Thus, after a long trouble-plagued start that taught the system engineers a great deal and the scientists very little, Project Ranger finished with three flights that greatly advanced the lunar scientists' knowledge of the surface and whetted their appetites for a closer look.
External links
* [http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780007206_1978007206.pdf Lunar Impact: A History of Project Ranger (PDF) 1977]
* [http://history.nasa.gov/SP-4210/pages/Cover.htm Lunar Impact: A History of Project Ranger (HTML)] Both links lead to a whole book on the program. For the HTML one, scroll down to see the table of contents link.
* [http://solarsystem.nasa.gov/missions/profile.cfm?MCode=Ranger Ranger Program Page] by [http://solarsystem.nasa.gov NASA's Solar System Exploration]
* [http://www.lpi.usra.edu/expmoon/ranger/ranger.html Exploring the Moon: The Ranger Program]
* [http://www.lpi.usra.edu/resources/ranger/ Ranger Photography of the Moon] Lunar and Planetary Institute
* [http://history.nasa.gov/series95.html NASA History Series Publications] (many of which are on-line)ee also
*
Surveyor program
*Lunar Orbiter program
*Apollo program
*Luna programme
*
Wikimedia Foundation. 2010.