Elongated square pyramid

Elongated square pyramid

Infobox_Polyhedron with net


Polyhedron_Type=Johnson
J7 - J8 - J9
Face_List=4 triangles
1+4 squares
Edge_Count=16
Vertex_Count=9
Symmetry_Group="C"4v
Vertex_List=4(43)
1(34)
4(32.42)
Dual=self
Property_List=


In geometry, the elongated square pyramid is one of the Johnson solids ("J"8). As the name suggests, it can be constructed by elongating a square pyramid ("J"1) by attaching a cube to its square base. Like any elongated pyramid, it is self-dual.

The 92 Johnson solids were named and described by Norman Johnson in 1966.

External links

*
*
* [http://www.lifeisastoryproblem.org/explore/net_elong_sqr_pyramid.pdf Printable Geometric Net of an Elongated Square Pyramid] [http://www.lifeisastoryproblem.org Life is a Story Problem.org]


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Pyramid of Djoser — Djoser Constructed 2667–2648 BC …   Wikipedia

  • Copley Square — Overview of Copley Square, looking down Boylston Street, 2009 …   Wikipedia

  • Johnson solid — The elongated square gyrobicupola (J37), a Johnson solid …   Wikipedia

  • Johnson-Körper — Die Johnson Körper sind eine Klasse geometrischer Körper. Inhaltsverzeichnis 1 Eigenschaften 2 Liste 2.1 Pyramiden, Kuppeln und Rotunden 2.2 modifizierte Pyramiden …   Deutsch Wikipedia

  • Polyèdre de Johnson — Solide de Johnson La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Polyèdres de Johnson — Solide de Johnson La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Solide de Johnson — La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Solide de johnson — La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Sólido de Johnson — La girobicúpula cuadrada elongada (J37), un sólido de Johnson …   Wikipedia Español

  • Dual polyhedron — The dual of a cube is an octahedron, shown here with vertices at the cube face centers …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”