Integral of secant cubed

Integral of secant cubed

One of the more challenging indefinite integrals of elementary calculus is

:int sec^3 x , dx = frac{1}{2}sec x an x + frac{1}{2}ln|sec x + an x| + C.

There are a number of reasons why this particular antiderivative is worthy of special attention:

* The technique used for reducing integrals of higher odd powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same way.

* This is one of several integrals usually done in a first-year calculus course in which the most natural way to proceed involves integrating by parts and returning to the same integral one started with (another is the integral of the product of an exponential function with a sine or cosine function; yet another the integral of a power of the sine or cosine function).

* This integral appears in the problem of rectifying (i.e. finding the arc length of) the parabola.

* This integral appears in the problem of finding the surface area of the helicoid.

Derivation

This antiderivative may be found by integration by parts, as follows:

: int sec^3 x , dx = int u,dv

where

:egin{align}u &{}= sec x, \dv &{}= sec^2 x,dx, \du &{}= sec x an x,dx, \v &{}= an x.end{align}

Then

:egin{align}int sec^3 x , dx &{}= int u,dv \&{}= uv - int v,du \&{} = sec x an x - int sec x an^2 x,dx \&{}= sec x an x - int sec x, (sec^2 x - 1),dx \&{}= sec x an x - int sec^3 x , dx + int sec x,dx.end{align}

Next we add scriptstyle{}intsec^3 x,dx to both sides of the equality just derived:

:egin{align}2 int sec^3 x , dx &{}= sec x an x + int sec x,dx \&{}= sec x an x + ln|sec x + an x| + C.end{align}

Then divide both sides by 2:

:int sec^3 x , dx = frac{1}{2}sec x an x + frac{1}{2}ln|sec x + an x| + C.

Higher odd powers of secant

Just as the integration by parts above reduced the integral of secant cubed to the integral of secant to the first power, so a similar process reduces the integral of higher odd powers of secant to lower ones. This is the secant reduction formula, which follows the syntax:

: int sec^n x , dx = frac{sec^{n-2} x an x}{n-1} ,+, frac{n-2}{n-1}int sec^{n-2} x , dx qquad ext{ (for }n e 1 ext{)},!

Alternatively:

: int sec^n x , dx = frac{sec^{n-1} x sin x}{n-1} ,+, frac{n-2}{n-1}int sec^{n-2} x , dx qquad ext{ (for }n e 1 ext{)},!

See also

* Table of integrals


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • List of calculus topics — This is a list of calculus topics.Note: the ordering of topics in sections is a suggestion to students.Before calculus (precalculus)*Graph of a function *Linear function *Secant *Slope *Tangent *Concavity *Finite difference *Radian *Factorial… …   Wikipedia

  • Интеграл от секанса — Интеграл секанса в тригонометрии был одним из объектов одной из «нерешённых задач середины семнадцатого века», которая была решена в 1668 году Джеймсом Грегори.[1] В 1599 году Эдвард Райт (англ.) оценил интеграл с помощью численных… …   Википедия

  • Integration by parts — Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem Differential calculus  Derivative Change of variables Implicit differentiation Taylor s theorem Related rates …   Wikipedia

  • List of mathematics articles (I) — NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… …   Wikipedia

  • Trigonometric substitution — In mathematics, trigonometric substitution is the substitution of trigonometric functions for other expressions. One may use the trigonometric identities to simplify certain integrals containing radical expressions:: ext{For } sqrt{a^2 x^2} ext{… …   Wikipedia

  • Lists of integrals — See the following pages for lists of integrals:* List of integrals of rational functions * List of integrals of irrational functions * List of integrals of trigonometric functions * List of integrals of inverse trigonometric functions * List of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”