Mikhail Khovanov

Mikhail Khovanov

Mikhail Khovanov is a professor of mathematics at Columbia University. He earned a PhD[1] in mathematics from Yale University in 1997, where he studied under Igor Frenkel.[2] His interests include knot theory and algebraic topology. He is most well known for the Khovanov homology for links, introduced in his seminal[3] paper "A categorification of the Jones polynomial",[4] which he published while at UC Davis.[5] This was one of the first examples of categorification and spawned a new direction of research in knot theory.[6]

References

  1. ^ Khovanov's PhD dissertation, "Graphical calculus, canonical bases and Kazhdan-Lusztig theory" (1997).
  2. ^ Mikhail Khovanov at the Mathematics Genealogy Project.
  3. ^ Bar-Natan, Dror (2002), "On Khovanov's categorification of the Jones polynomial", Algebraic and Geometric Topology 2: 337–370, doi:10.2140/agt.2002.2.337, ISSN 1472-2747, MR1917056 

    "Our hope for the week was to understand and improve Khovanov's seminal work on the categorification of the Jones polynomial" (Page 337).

  4. ^ Khovanov, Mikhail (2000), "A categorification of the Jones polynomial", Duke Mathematical Journal 101 (3): 359–426, doi:10.1215/S0012-7094-00-10131-7, ISSN 0012-7094, MR1740682 
  5. ^ "Mathematics", UC Davis Wiki, 4 April 2007.

    "Mikhail Khovanov was in the department when he developed the famous homology theory that bears his name."

  6. ^ ArXiv search showing more than 50 papers mention the Khovanov homology by name in the title.

External links



Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Khovanov homology — In mathematics, Khovanov homology is a homology theory for knots and links. It may be regarded as a categorification of the Jones polynomial. It was developed in the late 1990s by Mikhail Khovanov, then at the University of California, Davis, now …   Wikipedia

  • Igor Frenkel — Igor Borisovich Frenkel (born April 22 1952) is a mathematician working in mathematical physics. In collaboration with James Lepowsky and Arne Meurman he constructed the monster vertex algebra.Born in Leningrad, USSR (Now St. Petersburg, Russia) …   Wikipedia

  • Timeline of category theory and related mathematics — This is a timeline of category theory and related mathematics. By related mathematics is meant first hand * Homological algebra * Homotopical algebra * Topology using categories, especially algebraic topology * Categorical logic * Foundations of… …   Wikipedia

  • Floer homology — is a mathematical tool used in the study of symplectic geometry and low dimensional topology. First introduced by Andreas Floer in his proof of the Arnold conjecture in symplectic geometry, Floer homology is a novel homology theory arising as an… …   Wikipedia

  • Floer-Homologie — Floer Homologien (FH) bezeichnet in der Topologie und Differentialgeometrie eine Gruppe ähnlich konstruierter Homologie Invarianten. Sie haben ihren Ursprung im Werk von Andreas Floer und sind seitdem ständig weiterentwickelt worden. Floer… …   Deutsch Wikipedia

  • Floerhomologie — Floer Homologien (FH) bezeichnet in der Topologie und Differentialgeometrie eine Gruppe ähnlich konstruierter Homologie Invarianten. Sie haben ihren Ursprung im Werk von Andreas Floer und sind seitdem ständig weiterentwickelt worden. Floer… …   Deutsch Wikipedia

  • Symplektische Feldtheorie — Floer Homologien (FH) bezeichnet in der Topologie und Differentialgeometrie eine Gruppe ähnlich konstruierter Homologie Invarianten. Sie haben ihren Ursprung im Werk von Andreas Floer und sind seitdem ständig weiterentwickelt worden. Floer… …   Deutsch Wikipedia

  • List of mathematicians (K) — NOTOC K r * K.R.Parthasarathy (India, ? ) * Kaasalainen, Mikko (Finland, ? ) * Kac, Mark (Poland/USA, 1914 1984) * Kac, Victor (USA/Russia/Soviet Union, ? ) * Kaczmarz, Stefan (Poland, 1895 1940) * Kaczynski, Theodore (USA, 1942 ) * Kagan,… …   Wikipedia

  • Categorification — In mathematics, categorification refers to the process of replacing set theoretic theorems by category theoretic analogues. Categorification, when done successfully, replaces sets by categories, functions with functors, and equations by natural… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”