- Timeline of category theory and related mathematics
This is a timeline of category theory and related mathematics. By related mathematics is meant first hand
*Homological algebra
*Homotopical algebra
* Topology using categories, especiallyalgebraic topology
*Categorical logic
* Foundations of mathematics building on categories, for instancetopos theory
* Abstract geometry (includingalgebraic geometry , but not only)
* Quantization related to category theory, in particularcategorical quantization
*Categorical physics relevant for mathematicsTimeline
* 1940
Kurt Gödel -Paul Bernays — Classes (set theory)
* 1944Samuel Eilenberg — Modern definition ofsingular homology and cohomology
* 1945Saunders Mac Lane -Samuel Eilenberg — Start of category theory (axioms forcategories ,functors ,natural transformations )
* 1945Norman Steenrod -Samuel Eilenberg — Axioms for homology and cohomology:Eilenberg-Steenrod axioms
* 1945Jean Leray —Sheaf theory
* 1946Jean Leray —Spectral sequences
* 1950John Henry Whitehead — Outlines algebraic homotopy program
* 1956Henri Cartan -Samuel Eilenberg — Influential book: Homological algebra
* 1957Alexander Grothendieck — Influential paper: Tohoku
* 1958Alexander Grothendieck — Starts new foundation of algebraic geometry byschemes
* 1958Roger Godement — Monads (category theory) (then called standard constructions)
* 1958Daniel Kan —Adjoint functors
* 1958Alexander Grothendieck — Fibred categories
* 1960Daniel Kan —Kan extension s
* 1963Saunders Mac Lane —Monoidal categories
* 1963Alexander Grothendieck — Grothendiecktoposes
* 1963William Lawvere —Categorical logic andLawvere theories
* 1963Jean-Louis Verdier —Triangulated categories andtriangulated functors
* 1963Jean Giraud —Giraud big theorem
* 1963Charles Ehresmann —Internal categories ,double categories and2-categories
* 1964Alexander Grothendieck —Grothendieck topology on categories
* 1965Max Kelly -Samuel Eilenberg —Enriched category theory
* 1966Alexander Grothendieck — Crystals (differential equation)
* 1967Jean Bénabou — Bicategories (weak 2-categories)
* 1967William Lawvere —Synthetic differential geometry
* 1967 Simon Kochen-Ernst Specker —Kochen-Specker theorem
* 1967Jean-Louis Verdier —Derived categories andderived functors
* 1967Daniel Quillen — Model categories
* 1969Pierre Deligne -David Mumford — Deligne-Mumford stacks
* 1969William Lawvere —Doctrines (category theory)
* 1970William Lawvere —Toposes
* 1971Jean Giraud —Gerbe s
* 1971William Lawvere -Myles Tierney —Lawvere-Tierney topology on a topos
* 1972Max Kelly —Clubs (category theory) andcoherence (category theory)
* 1972Alexander Grothendieck — Universes (mathematics) for sets
* 1972Jean Bénabou -Ross Street —Cosmoses (category theory)
* 1972Peter May —Operad s
* 1972 William Mitchell-Jean Bénabou - InternalMitchell-Bénabou language for toposes
* 1974Jean Bénabou — Logic of fibred categories
* 1974Graeme Segal —Segal categories
* 1975Saul Kripke -Andre Joyal —Kripke-Joyal semantics
* 1978Andre Joyal — Joyalcombinatorial species inenumerative combinatorics
* 1981Shigeru Mukai —Mukai-Fourier transform
* 1983Alexander Grothendieck — Writes about 600 pages letter pursuing stacks to Daniel Quillen about his mathematical visions
* 1983Alexander Grothendieck — First appearance of strict n-categories andstrict ∞-categories in pursuing stacks
* 1983Alexander Grothendieck —Fundamental infinity groupoid appear in pursuing stacks
* 1985Andre Joyal -Ross Street — Braided monoidal categories
* 1986Alexander Grothendieck — Motives (algebraic geometry)
* 1987Ross Street — First definition ofweak n-category
* 1987Andre Joyal -Ross Street -Mei Chee Shum —Ribbon monoidal categories
* 1988Edward Witten — Axioms for topological quantum field theoryTQFT
* 1989 Hans Baues — Innfluential book: Algebraic homotopy
* 1990Peter Freyd — Allegories (category theory)
* 1990Nicolai Reshetikhin -Vladimir Turaev —Reshetikhin-Turaev invariant s of knots from modular monoidal categories of representations of quantum groups
* 1992 Yves Diers —Axiomatic categorical geometry
* 1992Saunders Mac Lane -Leke Moerdijk — Influential book: Sheaves in geometry and logic
* 1993 Kenji Fukaya — A∞-categories (Fukaya category )
* 1993 Daniel Freed — New view onTQFT using modular tensor categories that unifies 3 approach toTQFT (modular categories from path integrals)
* 1994 Francis Borceux — Handbook of categorical algebra (3 volumes)
* 1994Maxim Kontsevich — Formulateshomological mirror symmetry conjecture
* 1995john Baez -James Dolan — Introduces theperiodic table of mathematics
* 1995 Valentin Lychagin —Categorical quantization
* 1998John Baez -James Dolan —Microcosm principle
* 1999Mikhail Khovanov —Khovanov homology (categorization of the Jones polynomial)
* 1999Vladimir Voevodsky -Fabien Morel — Constructs the homotopy category of schemes
* 2002 Bertrand Toen-Gabriele Vezzosi —Homotopical algebraic geometry
* 2002Peter Johnstone — Influential book: sketches of an elephant - a topos theory compendium (2/3 volumes published)
* 2004Ross Street -Brian Day —Quantum categories References
Wikimedia Foundation. 2010.