Poincaré-Lindstedt method

Poincaré-Lindstedt method

In perturbation theory, the Poincaré-Lindstedt method, named after Henri Poincaré, [H. Poincaré, Les Méthodes Nouvelles de la Mécanique Célèste I, II, III (Dover Publ., New York,1957).] and Anders Lindstedt [A. Lindstedt, Abh. K. Akad. Wiss. St. Petersburg 31, No. 4 (1882)] , is a technique for uniformly approximating periodic solutions to ordinary differential equations when regular perturbation approaches fail.

Example: the Duffing equation

The undamped, unforced Duffing equation is given by

:ddot{x} + x + varepsilon x^3 = 0,

for t>0, with 0.J. David Logan. "Applied Mathematics", Second Edition, John Wiley & Sons, 1997. ISBN 0-471-16513-1.] Consider initial conditions

:x(0) = 1, dot x(0) = 0.,

If we try to find an approximate solution of the form x(t)=x_0(t) + varepsilon x_1(t) + cdots, we obtain

:x(t) = cos t + varepsilonleft( frac{1}{32}left( cos 3t - cos t ight) - frac{3}{8}t sin t ight).,

This approximation grows without bound in time, which is inconsistent with the physical system that the equation models. The term responsible for this unbounded growth, called the "secular term", is tsin t. The Poincaré-Lindstedt method allows us to create an approximation that is accurate for all time, as follows.

In addition to expressing the solution itself as an asymptotic series, form another series with which to scale time t:

: au = omega t,, where:omega = 1 + varepsilon omega_1 + cdots.,

(Here we take omega_0 = 1 because the leading order of the solution's frequency is 1/2pi.) Then the original problem becomes

:omega^2 x"( au) + x( au) + varepsilon x^3( au) = 0,

with the same initial conditions. If we search for a solution of the form x( au)=x_0( au) + varepsilon x_1( au) + cdots, we obtain x_0 = cos au and

:x_1 = frac{1}{32}cos 3 au + left( omega_1 - frac{3}{8} ight) ausin au.,

So a secular term can be removed if we choose omega_1 = 3/8. We can continue in this way to higher orders of accuracy; as of now, we have the approximation

:x(t)=cosleft(1 + frac{3}{8}varepsilon ight) t + frac{1}{32}varepsiloncos 3left(1 + frac{3}{8}varepsilon ight)t. ,

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Henri Poincaré — «Poincaré» redirige aquí. Para el político francés, véase Raymond Poincaré. Henri Poincaré …   Wikipedia Español

  • Anders Lindstedt — Infobox Scientist name = Anders Lindstedt birth date = June 27, 1854 birth place = Dalecarlia, Sweden MEMOIR ANDERS LINDSTEDT 27 June 1854 16 May 1939, Journal of the Institute of Actuaries, 70 (1939) p. 269. [http://www.actuaries.org.uk/… …   Wikipedia

  • Henri Poincare — Henri Poincaré Jules Henri Poincaré [pwɛ̃kaˈʀe] (* 29. April 1854 in Nancy; † 17. Juli 1912 in Paris) war ein bedeutender französischer Mathematiker, theoretischer Physiker und Philosoph. Seine Forschungen hatten auch starke Wi …   Deutsch Wikipedia

  • Jules Henri Poincaré — Henri Poincaré Jules Henri Poincaré [pwɛ̃kaˈʀe] (* 29. April 1854 in Nancy; † 17. Juli 1912 in Paris) war ein bedeutender französischer Mathematiker, theoretischer Physiker und Philosoph. Seine Forschungen hatten auch starke Wi …   Deutsch Wikipedia

  • List of mathematics articles (P) — NOTOC P P = NP problem P adic analysis P adic number P adic order P compact group P group P² irreducible P Laplacian P matrix P rep P value P vector P y method Pacific Journal of Mathematics Package merge algorithm Packed storage matrix Packing… …   Wikipedia

  • Singular perturbation — In mathematics, more precisely in perturbation theory, a singular perturbation problem is a problem containing a small parameter that cannot be approximated by setting the parameter value to zero. This is in contrast to regular perturbation… …   Wikipedia

  • Calcul des perturbations — Théorie des perturbations D un point de vue heuristique, la théorie des perturbations est une méthode mathématique générale qui permet de trouver une solution approchée d une équation mathématique (Eλ) dépendante d un paramètre λ lorsque la… …   Wikipédia en Français

  • Theorie des perturbations — Théorie des perturbations D un point de vue heuristique, la théorie des perturbations est une méthode mathématique générale qui permet de trouver une solution approchée d une équation mathématique (Eλ) dépendante d un paramètre λ lorsque la… …   Wikipédia en Français

  • Théorie des perturbations — D un point de vue heuristique, la théorie des perturbations est une méthode mathématique générale qui permet de trouver une solution approchée d une équation mathématique (Eλ) dépendante d un paramètre λ lorsque la solution de l équation (E0),… …   Wikipédia en Français

  • Chaos theory — This article is about chaos theory in Mathematics. For other uses of Chaos theory, see Chaos Theory (disambiguation). For other uses of Chaos, see Chaos (disambiguation). A plot of the Lorenz attractor for values r = 28, σ = 10, b = 8/3 …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”