- Rank-size distribution
Rank-size distribution or the rank-size rule (or law) describes the remarkable regularity in many phenomena including the distribution of city sizes around the world, sizes of businesses, particle sizes (such as sand), lengths of rivers, frequencies of word usage, wealth among individuals, etc. All are real-world observations that follow power laws such as those called
Zipf's law , theYule distribution , or thePareto distribution . If one ranks the population size of cities in a given country or in the entire world and calculates thenatural logarithm of the rank and of the city population, the resulting graph will show a remarkablelog-linear pattern. This is the rank-size distribution. [ [http://people.few.eur.nl/vanmarrewijk/geography/zipf/ Zipf's Law, or the Rank-Size Distribution] Steven Brakman, Harry Garretsen, and Charles van Marrewijk]In the case of city populations, the resulting distribution in a country, region or the world will be characterized by a largest city, with other cities decreasing in size respective to it, initially at a rapid rate and then more slowly. This results in a few large cities, and a much larger number of cities orders of magnitude smaller. For example, a rank 3 city would have ⅓ the population of a country's largest city, a rank four city would have ¼ the population of the largest city, and so on.
Why should simple rank be able to predict so easily such complex distributions? In short, why does the rank size rule “work?” One study has shown why this is so. [ [http://www-personal.umich.edu/~copyrght/image/monog08/fulltext.pdf The Urban Rank-Size Hierarchy] James W. Fonseca]
The distributions mentioned above such as Zipf, Pareto, Yule, etc., also called power laws, are all also related to the distribution known as the
Fibonacci sequence and to that of the equiangular spiral. In the Fibonacci sequence, each term is approximately 1.618 (theGolden ratio ) times the preceding term. A special case of the Fibonacci sequence is theLucas sequence consisting of these sequentially additive numbers 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199 ,…When any log-linear factor is ranked, the ranks follow the Lucas sequence as above and each of the terms in the sequence can also be approximated by the successive values of powers of 1.618. For example, the third term in the sequence above, 4, is approximately 1.6183 or 4.236 (which is approximately 4); the fourth term in the sequence, 7, is approximately 1.6184 or 6.854 (which is approximately 7); the eight term in the series, 47, is approximately 1.6188 or 46.979 (which is approximately 47). With higher and higher values, the figures converge.
Thus it is shown that the rank size rule “works” because it is a “shadow” or coincidental measure of the true phenomenon. The true value of rank size is thus not as an accurate mathematical measure (since other power-law formulas are more accurate, especially at ranks lower than 10) but rather as a handy measure or “rule of thumb” to spot power laws. When presented with a ranking of data, is the third-ranked variable approximately ⅓ the value of the highest-ranked one? Or, conversely, is the highest-ranked variable approximately ten times the value of the tenth-ranked one? If so, the rank size rule has possibly helped spot another power law relationship. A 2002 study found that, Zipf’s Law worked for 44 of 73 countries tested. [ [http://cep.lse.ac.uk/pubs/download/dp0641.pdf Kwok Tong Soo (2002)] ] The study also found that variations of the Pareto exponent are better explained by political variables than by economic geography variables like proxies for economies of scale or transportation costs. [ [http://www.oup.com/uk/orc/bin/9780199280988/01student/zipf/ Zipf's Law, or the Rank-Size Distribution] ]
References
Further reading
*cite journal
author = Brakman, S.
coauthors = Garretsen, H.; Van Marrewijk, C.; Van Den Berg, M.
year = 1999
title = The Return of Zipf: Towards a Further Understanding of the Rank-Size Distribution
journal = Journal of Regional Science
volume = 39
issue = 1
pages = 183–213
doi = 10.1111/1467-9787.00129
*cite journal
author = Guérin-Pace, F.
year = 1995
title = Rank-Size Distribution and the Process of Urban Growth
journal = Urban Studies
volume = 32
issue = 3
pages = 551–562
doi = 10.1080/00420989550012960
*cite journal
author = Reed, W.J.
year = 2001
title = The Pareto, Zipf and other power laws
journal = Economics Letters
volume = 74
issue = 1
pages = 15–19
doi=10.1016/S0165-1765(01)00524-9
*Douglas R. White , Laurent Tambayong, andNataša Kejžar . 2008. Oscillatory dynamics of city-size distributions in world historical systems. "Globalization as an Evolutionary Process: Modeling Global Change". Ed. byGeorge Modelski , Tessaleno Devezas, and William R. Thompson. London: Routledge. ISBN 9780415773614ee also
*
Pareto distribution
*Pareto principle
*The Long Tail
Wikimedia Foundation. 2010.