Lévy C curve

Lévy C curve

In mathematics, the Lévy C curve is a self-similar fractal that was first described and whose differentiability properties were analysed by Ernesto Cesàro in 1906 and G. Farber in 1910, but now bears the name of French mathematician Paul Pierre Lévy, who was the first to describe its self-similarity properties, as well as to provide a geometrical construction showing it as a representative curve in the same class as the Koch curve. It is a special case of a period-doubling curve, a de Rham curve.

L-system construction

If using a Lindenmayer system then the construction of the C curve starts with a straight line. An isosceles triangle with angles of 45°, 90° and 45° is built using this line as its hypotenuse. The original line is then replaced by the other two sides of this triangle.

At the second stage, the two new lines each form the base for another right-angled isosceles triangle, and are replaced by the other two sides of their respective triangle. So, after two stages, the curve takes the appearance of three sides of a rectangle with the same length as the original line, but only half as wide.

At each subsequent stage, each straight line segment in the curve is replaced by the other two sides of a right-angled isosceles triangle built on it. After "n" stages the curve consists of 2"n" line segments, each of which is smaller than the original line by a factor of 2"n"/2.

This L-system can be described as follows:

::

where "F" means "draw forward", "+" means "turn clockwise 45°", and "-" means "turn anticlockwise 45°".

The fractal curve that is the limit of this "infinite" process is the Lévy C curve. It takes its name from its resemblance to a highly ornamented version of the letter "C". The curve resembles the finer details of the Pythagoras tree.

The Hausdorff dimension of the C curve equals 2 (it contains open sets), whereas the boundary has dimension about 1.9340 [http://mathworld.wolfram.com/LevyFractal.html] .

Variations

The standard C curve is built using 45° isosceles triangles. Variations of the C curve can be constructed by using isosceles triangles with angles other than 45°. As long as the angle is less than 60°, the new lines introduced at each stage are each shorter than the lines that they replace, so the construction process tends towards a limit curve. Angles less than 45° produce a fractal that is less tightly "curled".

IFS construction

If using an iterated function system (IFS, or the random game IFS-method actually), then the construction of the C curve is a bit easier. It will need two sets of "rules" and that is: Two points in a plane (the translators), each associated with a scale factor of 1/sqrt{2}. The first rule will have a rotation of 45° and the second −45°. This set will iterate a point ["x", "y"] from randomly choosing any of the two rules and use the parameters associated with the rule to scale/rotate and translate the point using a 2D-transform function.

References

* Paul Lévy, "Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole" (1938), reprinted in "Classics on Fractals" Gerald A. Edgar ed. (1993) Addison-Wesley Publishing ISBN 0-201-58701-7.
* E. Cesaro, "Fonctions continues sans dérivée", Archiv der Math. und Phys. 10 (1906) pp 57-63.
* G. Farber, "Über stetige Funktionen II", Math Annalen, 69 (1910) pp 372-443.
* S. Bailey, T. Kim, R. S. Strichartz, "Inside the Lévy dragon", American Math. Monthly 109(8) (2002) pp 689-703


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Lévy distribution — Probability distribution name =Lévy (unshifted) type =density pdf cdf parameters =c > 0, support =x in [0, infty) pdf =sqrt{frac{c}{2pi frac{e^{ c/2x{x^{3/2 cdf = extrm{erfc}left(sqrt{c/2x} ight) mean =infinite median =c/2( extrm{erf}^{… …   Wikipedia

  • Dragon curve — A dragon curve is any member of a family of self similar fractal curves, which can be approximated by recursive methods such as Lindenmayer systems. Contents 1 Heighway dragon 1.1 Construction …   Wikipedia

  • Paul Pierre Lévy — For other uses, see Paul Lévy (disambiguation). Paul Lévy Paul Pierre Lévy Born …   Wikipedia

  • De Rham curve — In mathematics, a de Rham curve is a certain type of fractal curve named in honor of Georges de Rham. The Cantor function, Césaro curve, Minkowski s question mark function, the Lévy C curve, the blancmange curve and the Koch curve are all special …   Wikipedia

  • Courbe de Lévy — En mathématiques, la courbe de Lévy ou courbe en C est une courbe fractale. Décrite pour la première fois par Ernesto Cesàro en 1906[1] et Georg Farber en 1910 …   Wikipédia en Français

  • Private copying levy — Taxation An aspect of fiscal policy …   Wikipedia

  • Louis Lévy-Garboua — Louis Lévy Garboua, né le 27 septembre 1945 au Caire (Égypte), est un économiste français. Professeur de microéconomie et d économie des ressources humaines à l Université Paris 1 Panthéon Sorbonne, ses thèmes de recherche sont la… …   Wikipédia en Français

  • Trott curve — In real algebraic geometry, the Trott curve is the set of points ( x , y ) satisfying the degree four polynomial equation:displaystyle 144(x^4+y^4) 225(x^2+y^2)+350x^2y^2+81=0.These points form a nonsingular quartic plane curve that has genus… …   Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • Fractal — A fractal is generally a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced size copy of the whole, [cite book last = Mandelbrot first = B.B. title = The Fractal Geometry of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”