Leibniz harmonic triangle

Leibniz harmonic triangle

The Leibniz harmonic triangle is a triangular arrangement of fractions in which the outermost diagonals consist of the reciprocals of the row numbers and each inner cell is the absolute value of the cell above minus the cell to the left. To put it algebraically, "L"("r", 1) = 1/"n" (where "r" is the number of the row, starting from 1, and "c" is the column number, never more than "r") and "L"("r", "c") = "L"("r" - 1, "c" - 1) - "L"("r", "c" - 1).

The first eight rows are:

egin{array}{cccccccccccccccccc}& & & & & & & & & 1 & & & & & & & &\& & & & & & & & frac{1}{2} & & frac{1}{2} & & & & & & &\& & & & & & & frac{1}{3} & & frac{1}{6} & & frac{1}{3} & & & & & &\& & & & & & frac{1}{4} & & frac{1}{12} & & frac{1}{12} & & frac{1}{4} & & & & &\& & & & & frac{1}{5} & & frac{1}{20} & & frac{1}{30} & & frac{1}{20} & & frac{1}{5} & & & &\& & & & frac{1}{6} & & frac{1}{30} & & frac{1}{60} & & frac{1}{60} & & frac{1}{30} & & frac{1}{6} & & &\& & & frac{1}{7} & & frac{1}{42} & & frac{1}{105} & & frac{1}{140} & & frac{1}{105} & & frac{1}{42} & & frac{1}{7} & &\& & frac{1}{8} & & frac{1}{56} & & frac{1}{168} & & frac{1}{280} & & frac{1}{280} & & frac{1}{168} & & frac{1}{56} & & frac{1}{8} &\& & & & &vdots & & & & vdots & & & & vdots& & & & \end{array}

The denominators are listed in OEIS|id=A003506, while the numerators, which are all 1s, are listed in OEIS2C|id=A000012.

Whereas each entry in Pascal's triangle is the sum of the two entries in the above row, each entry in the Leibniz triangle is the sum of the two entries in the row "below" it. For example, in the 5th row, the entry (1/30) is the sum of the two (1/60)s in the 6th row.

Just as Pascal's triangle can be computed by using binomial coefficients, so can Leibniz's: L(r, c) = frac{1}{c {r choose c. Furthermore, the entries of this triangle can be computed from Pascal's, "the terms in each row are the initial term divided by the corresponding Pascal triangle entries." (Wells, 1986)

This triangle can be used to obtain examples for the Erdős–Straus conjecture when "n" is divisible by 4.

If one takes the denominators of the "n"th row and adds them, then the result will equal n 2^{n - 1}. For example, for the 3rd row, we have 3 + 6 + 3 = 12 = 3 × 22.

References

* D. Darling, "Leibniz' harmonic triangle" in "The Universal Book of Mathematics: From Abracadabra To Zeno's paradoxes". Hoboken, New Jersey: Wiley (2004)
* E. W. Weisstein, "Leibniz Harmonic Triangle." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/LeibnizHarmonicTriangle.html]
* D. Wells, "The Penguin Dictionary of Curious and Interesting Numbers." Penguin Books, NY, 1986, 35.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Pascal's triangle — The first six rows of Pascal s triangle In mathematics, Pascal s triangle is a triangular array of the binomial coefficients in a triangle. It is named after the French mathematician, Blaise Pascal. It is known as Pascal s triangle in much of the …   Wikipedia

  • Gottfried Leibniz — Infobox Philosopher region = Western Philosophy era = 18th century philosophy color = #B0C4DE |250px image caption = Gottfried Wilhelm Leibniz name = Gottfried Wilhelm Leibniz birth = 1 July (21 June Old Style) 1646, Leipzig, Electorate of Saxony …   Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • Harmonisches Dreieck — Das Harmonische Dreieck oder Leibnizsches Harmonisches Dreieck von Gottfried Wilhelm Leibniz ist analog zum Pascalschen Dreieck aufgebaut: Die n te Zeile beginnt und schließt am Rand mit Jede Zahl ist die Summe der beiden unter ihr stehenden… …   Deutsch Wikipedia

  • History of Grandi's series — Geometry and infinite zerosGrandiGuido Grandi (1671 – 1742) reportedly provided a simplistic account of the series in 1703. He noticed that inserting parentheses into nowrap|1=1 − 1 + 1 − 1 + · · · produced varying results: either:(1 1) + (1 1) + …   Wikipedia

  • mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… …   Universalium

  • analysis — /euh nal euh sis/, n., pl. analyses / seez /. 1. the separating of any material or abstract entity into its constituent elements (opposed to synthesis). 2. this process as a method of studying the nature of something or of determining its… …   Universalium

  • Pythagoreanism — /pi thag euh ree euh niz euhm/, n. the doctrines of Pythagoras and his followers, esp. the belief that the universe is the manifestation of various combinations of mathematical ratios. [1720 30; PYTHAGOREAN + ISM] * * * Philosophical school,… …   Universalium

  • History of mathematics — A proof from Euclid s Elements, widely considered the most influential textbook of all time.[1] …   Wikipedia

  • Trigonometric functions — Cosine redirects here. For the similarity measure, see Cosine similarity. Trigonometry History Usage Functions Generalized Inverse functions …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”