- Conic optimization
-
Conic optimization is a subfield of convex optimization that studies a class of structured convex optimization problems called conic optimization problems. A conic optimization problem consists of minimizing a convex function over the intersection of an affine subspace and a convex cone.
The class of conic optimization problems is a subclass of convex optimization problems and it includes some of the most well known classes of convex optimization problems, namely linear and semidefinite programming.
Contents
Definition
Given a real vector space X, a convex, real-valued function
defined on a convex cone , and an affine subspace defined by a set of affine constraints , a conic optimization problem is to find the point x in for which the number f(x) is smallest. Examples of C include the positive semidefinite matrices , the positive orthant for , and the second-order cone . Often is a linear function, in which case the conic optimization problem reduces to a semidefinite program, a linear program, and a second order cone program, respectively.
Duality
Certain special cases of conic optimization problems have notable closed-form expressions of their dual problems.
Conic LP
The dual of the conic linear program
- minimize
- subject to
is
- maximize
- subject to
where C * denotes the dual cone of .
Semidefinite Program
The dual of a semidefinite program in inequality form,
minimize subject to
is given by
maximize subject to
External links
- Boyd, Stephen P.; Vandenberghe, Lieven (2004) (pdf). Convex Optimization. Cambridge University Press. ISBN 9780521833783. http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf. Retrieved October 15, 2011.
- MOSEK Software capable of solving conic optimization problems.
Categories:
Wikimedia Foundation. 2010.