Morse-Palais lemma

Morse-Palais lemma

In mathematics, the Morse-Palais lemma is a result in the calculus of variations and theory of Hilbert spaces. Roughly speaking, it states that a smooth enough function near a critical point can be expressed as a quadratic form after a suitable change of coordinates.

The Morse-Palais lemma was originally proved in the finite-dimensional case by the American mathematician Marston Morse, using the Gram–Schmidt orthogonalization process. This result plays a crucial role in Morse theory. The generalization to Hilbert spaces is due to Richard Palais.

tatement of the lemma

Let ("H", 〈 , 〉) be a real Hilbert space, and let "U" be an open neighbourhood of 0 in "H". Let "f" : "U" → R be a ("k" + 2)-times continuously differentiable function with "k" ≥ 1, i.e. "f" ∈ "C""k"+2("U"; R). Assume that "f"(0) = 0 and that 0 is a non-degenerate critical point of "f", i.e. the second derivative D2"f"(0) defines an isomorphism of "H" with its continuous dual space "H" by

:H i x mapsto mathrm{D}^{2} f(0) ( x, - ) in H^{*}.

Then there exists a subneighbourhood "V" of 0 in "U", a diffeomorphism "φ" : "V" → "V" that is "C""k" with "C""k" inverse, and an invertible symmetric operator "A" : "H" → "H", such that

:f(x) = langle A varphi(x), varphi(x) angle

for all "x" ∈ "V".

Corollary

Let "f" : "U" → R be "C""k"+2 such that 0 is a non-degenerate critical point. Then there exists a "C""k"-with-"C""k"-inverse diffeomorphism "ψ" : "V" → "V" and an orthogonal decomposition

:H = G oplus G^{perp},

such that, if one writes

:psi (x) = y + z mbox{ with } y in G, z in G^{perp},

then

:f (psi(x)) = langle y, y angle - langle z, z angle

for all "x" ∈ "V".

References

*


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Morse–Palais lemma — In mathematics, the Morse–Palais lemma is a result in the calculus of variations and theory of Hilbert spaces. Roughly speaking, it states that a smooth enough function near a critical point can be expressed as a quadratic form after a suitable… …   Wikipedia

  • Morse theory — Morse function redirects here. In another context, a Morse function can also mean an anharmonic oscillator: see Morse potential In differential topology, the techniques of Morse theory give a very direct way of analyzing the topology of a… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • Liste de lemmes (mathématiques) — Liste de lemmes mathématiques par ordre alphabétique. En mathématiques, un lemme est un énoncé prouvé, mais jugé moins important que ce qu on appelle un théorème, qu il sert généralement à établir au cours d une démonstration. Néanmoins cette… …   Wikipédia en Français

  • Matrice hessienne — En mathématiques, la matrice hessienne (ou simplement la hessienne) d une fonction numérique f est la matrice carrée, notée H(f), de ses dérivées partielles secondes. Plus précisément, étant donnée une fonction f à valeurs réelles f(x1, x2, ...,… …   Wikipédia en Français

  • List of mathematics articles (P) — NOTOC P P = NP problem P adic analysis P adic number P adic order P compact group P group P² irreducible P Laplacian P matrix P rep P value P vector P y method Pacific Journal of Mathematics Package merge algorithm Packed storage matrix Packing… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”