Wigner-Eckart theorem

Wigner-Eckart theorem

The Wigner-Eckart theorem is a theorem of representation theory and quantum mechanics. It states that matrix elements of spherical tensor operators on the basis of angular momentum eigenstates can be expressed as the product of two factors, one of which is independent of angular momentum orientation, while the other is just a Clebsch-Gordan coefficient.

The Wigner-Eckart Theorem reads

:langle jm|T^k_q|j'm' angle =langle j||T^k||j' angle C^{jm}_{kqj'm'}

where T^k_q is a rank k spherical tensor, |jm angle and |j'm' angle are eigenkets of total angular momentum J^2 and its z-component J_z, langle j||T^k||j' angle has a value which is independent of m and q, and C^{jm}_{kqj'm'}=langle j'm';kq|jm angle is the Clebsch-Gordan coefficient for adding j' and k to get j.

In effect, the Wigner-Eckart theorem says that operating with a spherical tensor operator of rank k on an angular momentum eigenstate is like adding a state with angular momentum k to the state. The matrix element one finds for the spherical tensor operator is proportional to a Clebsch-Gordan coefficient, which arises when considering adding two angular momenta.

Example

Consider the position expectation value langle njm|x|njm angle. This matrix element is the expectation value of a Cartesian operator in a spherically-symmetric hydrogen-atom-eigenstate basis, which is a nontrivial problem. However, using the Wigner-Eckart theorem simplifies the problem. (In fact, we could get the solution right away using parity, but we'll go a slightly longer way.)

We know that x is one component of vec r, which is a vector. Vectors are rank-1 tensors, so x is some linear combination of T^1_q for q=-1,0,1. In fact, it can be shown that x=frac{T_{-1}^{1}-T^1_1}{sqrt{2. Therefore:langle njm|x|njm angle =frac{1}{sqrt{2langle nj||T^1||nj angle (C^{jm}_{jm11}-C^{jm}_{jm1(-1)})which is zero since both of the Clebsch-Gordan coefficients are zero.

References

*J. J. Sakurai, (1994). "Modern Quantum Mechanics", Addison Wesley, ISBN 0-201-53929-2.
*mathworld|urlname=Wigner-EckartTheorem|title= Wigner-Eckart theorem
* [http://electron6.phys.utk.edu/qm2/modules/m4/wigner.htm Wigner-Eckart theorem]
* [http://galileo.phys.virginia.edu/classes/752.mf1i.spring03/TensorOperators.htm Tensor Operators]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Wigner-Eckart-Theorem — Das Wigner Eckart Theorem (nach Eugene Paul Wigner und Carl Henry Eckart) ist ein Hilfsmittel für die Berechnung der Matrixelemente eines Tensoroperators, wenn dessen Symmetrieeigenschaften bekannt sind. Das Wigner Eckart Theorem darf nicht mit… …   Deutsch Wikipedia

  • Wigner-Eckart theorem — Vignerio ir Ekarto teorema statusas T sritis fizika atitikmenys: angl. Wigner Eckart theorem vok. Wigner Eckart Theorem, n rus. теорема Вигнера Еккарта, f pranc. théorème de Wigner Eckart, m …   Fizikos terminų žodynas

  • Wigner-Eckart-Theorem — Vignerio ir Ekarto teorema statusas T sritis fizika atitikmenys: angl. Wigner Eckart theorem vok. Wigner Eckart Theorem, n rus. теорема Вигнера Еккарта, f pranc. théorème de Wigner Eckart, m …   Fizikos terminų žodynas

  • Wigner-Eckart — Das Wigner Eckart Theorem (nach Eugene Paul Wigner und Carl Henry Eckart) ist ein Hilfsmittel für die Berechnung der Matrixelemente eines Tensoroperators, wenn dessen Symmetrieeigenschaften bekannt sind. Das Wigner Eckart Theorem darf nicht mit… …   Deutsch Wikipedia

  • Wigner Eckart — Das Wigner Eckart Theorem (nach Eugene Paul Wigner und Carl Henry Eckart) ist ein Hilfsmittel für die Berechnung der Matrixelemente eines Tensoroperators, wenn dessen Symmetrieeigenschaften bekannt sind. Das Wigner Eckart Theorem darf nicht mit… …   Deutsch Wikipedia

  • théorème de Wigner-Eckart — Vignerio ir Ekarto teorema statusas T sritis fizika atitikmenys: angl. Wigner Eckart theorem vok. Wigner Eckart Theorem, n rus. теорема Вигнера Еккарта, f pranc. théorème de Wigner Eckart, m …   Fizikos terminų žodynas

  • Wigner — Eugene Paul Wigner (Ungarisch: Wigner Jenő Pál, * 17. November 1902 in Budapest; † 1. Januar 1995 in Princeton, New Jersey) war ein ungarisch amerikanischer Physiker und Nobelpreisträger. Inhaltsverzeichnis 1 Leben und Werk 2 …   Deutsch Wikipedia

  • Carl Eckart — Carl Henry Eckart (May 4, 1902 in St. Louis, Missouri ndash; October 23, 1973 in La Jolla, California) was an American physicist, physical oceanographer, geophysicist, and administrator. He co developed the Wigner Eckart theorem and is also known …   Wikipedia

  • Eugene Wigner — Infobox Scientist box width = 300px name = E. P. Wigner caption = Eugene Paul Wigner (1902 1995) birth date = birth date|1902|11|17|mf=y birth place = Budapest, Hungary (Austria Hungary) death date = death date and age|1995|1|1|1902|11|17 death… …   Wikipedia

  • Eugen Wigner — Eugene Paul Wigner (Ungarisch: Wigner Jenő Pál, * 17. November 1902 in Budapest; † 1. Januar 1995 in Princeton, New Jersey) war ein ungarisch amerikanischer Physiker und Nobelpreisträger. Inhaltsverzeichnis 1 Leben und Werk 2 …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”