Eukaryotic initiation factor

Eukaryotic initiation factor

Eukaryotic initiation factors are proteins used in eukaryotic translation. There exist many more eukaryotic initiation factors (eIF) than prokaryotic initiation factors due to greater biological complexity. Processes eIF is involved in include: formation of initiation complexes with 5' mRNA and complexing with Met-tRNAi, binding mRNA-factor to Met-tRNAi, scanning mRNA for the initiator codon AUG, locating the binding site of initator tRNA to the AUG start site, and joining of the 60S subunit to create the 80S subunit.

The protein RLI is known to have an essential, probably catalytic role in the formation of initiation complexes as well.

eIF4 (eIF4F)

The eIF4 initiation factors include eIF4A2, eIF4A3, eIF4B, eIF4E, and eIF4G. eIF4F is often used to refer to the complex of eIF4A, eIF4E, and eIF4G.

eIF4G is a scaffolding protein that interacts with eIF3 (see below), as well as the other members of the eIF4F complex. eIF4A - an RNA helicase - is important for resolving any secondary structures the mRNA transcript may form. eIF4E binds the 5' cap of the mRNA and the rate-limiting step for cap-dependent translation.

eIF4B contains two RNA binding domains - one non-specific interacts with mRNA, while the second specifically binds the 18S portion of the small ribosomal subunit. It acts as an anchor, as well as a critical co-factor for eIF4A. It is a substrate of S6K and when phosphorylated it promotes the formation of the pre-initiation complex.

eIF1 & eIF3

eIF1, eIF1A, and eIF3, all bind to the ribosome subunit-mRNA complex. They have been implicated in preventing the large ribosomal subunit from binding the small subunit before it is ready to commence elongation.

In mammals eIF3 is the largest scaffolding initiation factor made up of 13 subunits (a-m). It is roughly ~750 kDa and it controls the assembly of 40S ribosomal subunit on mRNA that have a 5' cap or an IRES. eIF3 uses the eIF4F complex or IRES (Internal Ribosomal Entry Site) from viruses to position the mRNA strand near the exit site of the 40S ribosome subunit thus promoting the assembly of the pre-initiation complex.

In many cancers eIF3 is overexpressed. Under serum deprived conditions (inactive state) eIF3 is bound to S6K1. On stimulation either by mitogens, growth factors or drugs mTOR/Raptor complex gets activated and in turn binds and phosphorylates S6K1 on T389 (linker region) causing a conformational change that causes the kinase S6K1 to dissociate from eIF3. The T389 phosphorylated S6k1 is then further phosphorylated by PDK1 on T229. This second phosphorylation fully activates the S6K1 kinase which can then phosphorylate eIF4B, S6 and other protein targets.


:"See main article at EIF-2"eIF2 is a GTP-binding protein responsible for bringing the initiator tRNA to the P-site of the pre-initiation complex. It has specificity for the methionine-charged initiator tRNA, which is distinct from other methionine-charged tRNAs specific for elongation of the polypeptide chain. Once it has placed the initiator tRNA on the AUG start codon in the P-site, it hydrolyzes GTP into GDP, and dissociates. This hydrolysis, also signals for the dissociation of eIF3, eIF1, and eIF1A, and allows the large subunit to bind. This signals the beginning of elongation.

eIF2 has three subunits, eIF2-α, β, and γ. The former is of particular importance for cells which may need to turn off protein synthesis globally. When phosphorylated, it sequesters eIF2B (not to be confused with beta), a GEF. Without this GEF, GDP cannot be exchanged for GTP, and translation is repressed.

eIF2α-induced translation repression occurs in reticulocytes when starved for iron. Additionally, protein kinase R (PKR) phosphorylates eIF2α when dsRNA is detected in many multicellular organisms, leading to cell death.

eIF5 & eIF5B

eIF5A is a GTPase activating protein, which helps the large ribosomal subunit associate with the small subunit. It is required for GTP-hydrolysis by eIF2.

eIF5B is a GTPase, and is involved in assembly of the full ribosome (which requires GTP hydrolysis).

ee also

* Rotavirus Translation

External links

* [ Cap-dependent translation initiation] from Nature Reviews Microbiology. A good image and overview of the function of initiation factors

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Eukaryotic translation initiation factor 4 gamma — Eukaryotic translation initiation factor 4 gamma, 1, also known as EIF4G1, is a human gene. PBB Summary section title = summary text = The protein encoded by this gene is a component of the protein complex EIF4F, which is involved in the… …   Wikipedia

  • Initiation factor — Initiation factors are proteins that bind to the small subunit of the ribosome during the initiation of translation, a part of protein biosynthesis.They are divided into two major groups: * Prokaryotic initiation factors * Eukaryotic initiation… …   Wikipedia

  • Eukaryotic translation — is the process by which messenger RNA is translated into proteins in eukaryotes. It consists of initiation, elongation and termination [ games/medicine/dna/a/translation/] Translation] InitiationCap …   Wikipedia

  • Eukaryotic transcription — is more complex than prokaryotic transcription. For instance, in eukaryotes the genetic material (DNA), and therefore transcription, is primarily localized to the nucleus, where it is separated from the cytoplasm (in which translation occurs) by… …   Wikipedia

  • Guanine nucleotide exchange factor — Guanine nucleotide exchange factors (GEFs) are components of intracellular signalling networks. They function as activators of small GTPases (see Nucleotide exchange factor). In their resting state, G proteins are bound to Guanosine diphosphate… …   Wikipedia

  • Transcription Factor II B — (TFIIB) is one of several general transcription factors that make up the RNA polymerase II preinitiation complex.cite book | author = Lewin, Benjamin | title = Genes VIII | publisher = Pearson Prentice Hall | location = Upper Saddle River, NJ |… …   Wikipedia

  • Transcription Factor II F — protein Name = general transcription factor IIF, polypeptide 1, 74kDa caption = width = HGNCid = 4652 Symbol = GTF2F1 AltSymbols = TFIIF, BTF4, RAP74 EntrezGene = 2962 OMIM = 189968 RefSeq = NM 002096 UniProt = P35269 PDB = ECnumber = Chromosome …   Wikipedia

  • DNA replication factor CDT1 — Chromatin licensing and DNA replication factor 1 Identifiers Symbols CDT1; DUP; RIS2 External IDs …   Wikipedia

  • Transcription factor — In the field of molecular biology, a transcription factor (sometimes called a sequence specific DNA binding factor) is a protein that binds to specific sequences of DNA and thereby controls the transfer (or transcription) of genetic information… …   Wikipedia

  • General transcription factor — General transcription factors (GTF s) or basal transcription factors are protein transcription factors that have been shown to be important in the transcription of class II genes to mRNA templates cite journal | author = Lee TI, Young RA | title …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”