- Elementary physics formulae
A list of elementary
physics formulae commonly appearing in high-school and college introductory physics courses. The list consists primarily of formulas concerningmechanics , showing relations betweenmatter ,energy , motion, andforce inEuclidean space , under the action ofNewtonian mechanics .Meanings of the symbols
a,:
acceleration A,:
area oramplitude E,:
energy F,:
force sum F: net
force f_k,: kinetic
friction forcef_s,: static friction force
g,:
acceleration due togravity J,:
Impulse KE,:
kinetic energy m,:
mass mu_k,: coefficient of kinetic friction
mu_s,:
coefficient of static friction N,:
Normal force to a surfaceu ,:
Frequency vec{p}:
Momentum P,: Power
Q,: heat or flowrate
r,:
radius vec{s},: Distance traveled
T,: Period
t,: time
heta,: Angle (see annotations next to each individual formula for details)
U_g,:
gravitational potential energy V,:
volume V_{df},: volume of displaced fluid
v_f,: final
velocity Vo: initial
velocity x_f,: final
position x_i,: initial
position Dynamics Like kinematics, dynamics deal with motion, but take into consideration
force andmass .:sum F} = ma, --Newton's second law :N = mgcos heta, (heta, is the angle between the supporting surface and the vertical):f_k = {mu_k}N, (object moving relative to surface):f_s = {mu_s}N, (object not moving relative to surface)Work, energy and power
Work, energy, and power describes an objects ability to affect nature.:W = int vec{F} cdot dvec{s} -- definition of
mechanical work :W = Delta {KE},!:W = -Delta {U},!:U_g = mgh ,!:E = KE + U ,!:KE = frac{1}{2}{mv^2},!:P = frac{dE}{dt} = int vec{F}cdot vec{v} ,!:P_{avg} = frac{Delta E}{Delta t},!Simple Harmonic Motion These are
mechanics formulae that deal withsimple harmonic motion .:F = -kx,! (k, is thespring constant ) --Hooke's law :T_{spring} = (1/2pi)sqrt{frac{m}{k,!:u = frac{1}{T},!:U_s = frac{1}{2}kx^2,! (k, is thespring constant ):v_{maxspring} = xsqrt{frac{k}{m,!:T_{pendulum} = 2pisqrt{frac{L}{g,! (for asimple pendulum )Momentum Momentum is the amount of mass moving, in
classical mechanics .:vec{p} = mvec{v} ,! -- definition ofmomentum :J = int F ,dt -- definition ofimpulse :J = Delta p ,!:m_1vec{v_1} + m_2vec{v_2} = m_1vec{v_1'} + m_2vec{v_2'} ,! --conservation of momentum :frac{1}{2}m_1v_1^2 + frac{1}{2}m_2v_2^2 = frac{1}{2}m_1v_1'^2 + frac{1}{2}m_2v_2'^2 ,! (Note: this is only true forelastic collision s)Uniform circular Motion andGravitation An object moving along a circular path at constant speed is in uniform circular motion. In this section, a_c, F_c, et cetera, stand for centripetal acceleration and force, respectively.:a_c = frac{v^2}{r} = frac{4pi^2r}{t^2},!:F_c = frac{mv^2}{r},!:F_g = Gfrac{m_1m_2}{r^2},!:a_{gravity} = Gfrac{m_{planet{r^2},!:v_{satellite} = sqrt{frac{Gm_{planet{R:U_{gravitational} = Gfrac{m_1m_2}{r}:KE_{satellite} = Gfrac{m_sm_{planet{2R}:E_{satellite} = -Gfrac{m_sm_{planet{2R}:frac{T_1^2}{a_1^3} = frac{T_2^2}{a_2^3}
Thermodynamics Thermodynamics deal with the energy, motion, and
entropy of microscopic particles.:Q = mc Delta T ,!:Delta L = L_i alpha Delta T ,!:Delta V = V_i eta Delta T ,!:PV = nRT ,!:frac{P_iV_i}{T_i} = frac{P_fV_f}{T_f} ,!:Delta U = Delta Q + Delta T ,!:e = 1-frac{Delta Q_{out{Delta Q_{in ,!
Rotational Motion :oldsymbol au=rF sin heta
Fluids :F_{buoyancy} = ho g V_{df},:p = p_{atmospheric} + ho g h,:p = frac{F}{a},!:Q = Av,!
External links
* [http://www.xs4all.nl/~johanw/contents.html Comprehensive physics formulae]
Wikimedia Foundation. 2010.