Double coset

Double coset

In mathematics, an (H,K) double coset in G, where G is a group and H and K are subgroups of G, is an equivalence class for the equivalence relation defined on G by

x ~ y if there are h in H and k in K with hxk = y.

Then each double coset is of form HxK, and G is partitioned into its (H,K) double cosets; each of them is a union of ordinary right cosets Hy of H in G and left cosets zK of K in G. In another aspect, these are in fact orbits for the group action of H×K on G with H acting by left multiplication and K by inverse right multiplication. The space of double cosets can be written


Algebraic structure

It is possible to define a kind of product of double cosets in an associated ring.

Given two double cosets Hg1K and Kg2L, we decompose each into right cosets  H g_1 K = \coprod_i H a_i and  K g_2 L = \coprod_j K b_j. If we write  c_g = \left | \{ (i,j) : a_i b_j \in H g \} \right |, then we can define the product of Hg1K with Kg2L as the formal sum

 H g_1 K \cdot K g_2 L = \sum_{g \in H \backslash G} c_g H g L.

An important case is when H = K = L, which allows us to define an algebra structure on the associated ring spanned by linear combinations of double cosets.


Double cosets are important in connection with representation theory, when a representation of H is used to construct an induced representation of G, which is then restricted to K. The corresponding double coset structure carries information about how the resulting representation decomposes.

They are also important in functional analysis, where in some important cases functions left-invariant and right-invariant by a subgroup K can form a commutative ring under convolution: see Gelfand pair.

In geometry, a Clifford–Klein form is a double coset space Γ\G/H, where G is a reductive Lie group, H is a closed subgroup, and Γ is a discrete subgroup (of G) that acts properly discontinuously on the homogeneous space G/H.

In number theory, the Hecke algebra corresponding to a congruence subgroup Γ of the modular group is spanned by elements of the double coset space \Gamma \backslash \mathrm{GL}_2^+(\mathbb{Q}) / \Gamma; the algebra structure is that acquired from the multiplication of double cosets described above. Of particular importance are the Hecke operators Tm corresponding to the double cosets Γ0(N)gΓ0(N) or Γ1(N)gΓ1(N), where g= \begin{pmatrix} 1 & 0 \\ 0 & m \end{pmatrix} (these have different properties depending on whether m and N are coprime or not), and the diamond operators  \langle d \rangle given by the double cosets \Gamma_1(N) \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Gamma_1(N) where  d \in (\mathbb{Z}/N\mathbb{Z})^\times and we require \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) (the choice of a, b, c does not affect the answer).

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Coset — In mathematics, if G is a group, and H is a subgroup of G, and g is an element of G, then gH = {gh : h an element of H } is a left coset of H in G, and Hg = {hg : h an element of H } is a right coset of H in G. Only when H is normal… …   Wikipedia

  • Hanna Neumann conjecture — In the mathematical subject of group theory, the Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957Hanna Neumann. On… …   Wikipedia

  • Gelfand pair — In mathematics, the expression Gelfand pair refers to a pair ( G ,  K ) consisting of a group G and a subgroup K that satisfies a certain property on restricted representations.When G is a finite group the simplest definition is, roughly speaking …   Wikipedia

  • Homogeneous space — In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group G is a non empty manifold or topological space X on which G acts continuously by symmetry in a transitive way. A… …   Wikipedia

  • Character theory — This article refers to the use of the term character theory in mathematics. For the media studies definition, see Character theory (Media). In mathematics, more specifically in group theory, the character of a group representation is a function… …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • Bruhat decomposition — In mathematics, the Bruhat decomposition G = BWB into cells can be regarded as a general expression of the principle of Gauss–Jordan elimination, which generically writes a matrix as a product of an upper triangular and lower triangular matrices… …   Wikipedia

  • Critère d'irréductibilité de Mackey — En mathématiques, et plus précisément dans le cadre de la théorie des représentations d un groupe, le critère d irréductibilité de Mackey propose une condition nécessaire et suffisante pour qu une représentation induite soit irréductible. Ce… …   Wikipédia en Français

  • Classe suivant un sous-groupe — En théorie des groupes, les classes à gauche d un groupe G suivant un sous groupe H sont les parties de G de la forme gH avec g élément de G, où gH désigne l ensemble des éléments gh quand h parcourt H. Elles constituent les classes d une… …   Wikipédia en Français

  • Formule du produit (théorie des groupes) —  Ne doit pas être confondue avec la formule du produit en théorie algébrique des nombres. En mathématiques, la formule du produit en théorie des groupes relie les cardinaux de quatre parties d un groupe, naturellement associées à deux sous… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”