Ideal quotient

Ideal quotient

In abstract algebra, if I and J are ideals of a commutative ring R, their ideal quotient (I : J) is the set

(I : J) = \{r \in R | rJ \subset I\}.

Then (I : J) is itself an ideal in R. The ideal quotient is viewed as a quotient because IJ \subset K if and only if I \subset K : J. The ideal quotient is useful for calculating primary decompositions. It also arises in the description of the set difference in algebraic geometry.

Because of the notation, (I : J) is sometimes referred to as a colon ideal. There is an unrelated notion of the inverse of an ideal, known as a fractional ideal which is defined for Dedekind rings.

Properties

The ideal quotient satisfies the following properties:

  • J \subset I \Rightarrow I : J = R
  • I:R = I
  • R:I = R
  • I : (J + K) = (I : J) \cap (I : K)
  • I : (r) = \frac{1}{r}(I \cap (r)) (as long as R is an integral domain)

Calculating the quotient

The above properties can be used to calculate the quotient of ideals in a polynomial ring given their generators. For example, if I = (f1, f2, f3) and J = (g1, g2) are ideals in k[x1, ..., xn], then

I : J = (I : (g_1)) \cap (I : (g_2)) = (\frac{1}{g_1}(I \cap (g_1))) \cap (\frac{1}{g_2}(I \cap (g_2)))

Then elimination theory can be used to calculate the intersection of I with (g1) and (g2):

I \cap (g_1) = tI + (1-t)(g_1) \cap k[x_1, \dots, x_n], \quad I \cap (g_2) = tI + (1-t)(g_1) \cap k[x_1, \dots, x_n]

Calculate a Gröbner basis for tI + (1-t)(g1) with respect to lexicographic order. Then the basis functions which have no t in them generate I \cap (g_1).

Geometric interpretation

The ideal quotient corresponds to set difference in algebraic geometry. More precisely,

  • If W is an affine variety and V is a subset of the affine space (not necessarily a variety), then
I(V) : I(W) = I(V \ W),

where I denotes the taking of the ideal associated to a subset.

  • If I and J are ideals in k[x1, ..., xn], then
Z(I : J) = cl(Z(I) \ Z(J)),

where "cl" denotes the Zariski closure, and Z denotes the taking of the variety defined by the ideal I.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Idéal — Pour les articles homonymes, voir Idéal (homonymie). En mathématiques, et plus particulièrement en algèbre, un idéal est un sous ensemble remarquable d un anneau. Par certains égards, les idéaux s apparentent aux sous espaces vectoriels ce sont… …   Wikipédia en Français

  • Idéal de l'anneau des entiers d'un corps quadratique — En mathématiques et plus précisément en théorie algébrique des nombres, l anneau des entiers d un corps quadratique ressemble à certains égards à celui des entiers relatifs. Certains d entre eux sont euclidiens comme celui des entiers de Gauss d… …   Wikipédia en Français

  • Ideal (ring theory) — In ring theory, a branch of abstract algebra, an ideal is a special subset of a ring. The ideal concept allows the generalization in an appropriate way of some important properties of integers like even number or multiple of 3 . For instance, in… …   Wikipedia

  • Ideal premier — Idéal premier Richard Dedekind 1831 1916 formalisateur du concept d idéal Un idéal premier est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d un anneau commutatif unitaire est dit premier… …   Wikipédia en Français

  • Idéal Premier — Richard Dedekind 1831 1916 formalisateur du concept d idéal Un idéal premier est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d un anneau commutatif unitaire est dit premier si, et s …   Wikipédia en Français

  • Ideal maximal — Idéal maximal Richard Dedekind 1831 1916 formalisateur du concept d idéal Un idéal maximal est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d un anneau est dit maximal si, et seulement si,… …   Wikipédia en Français

  • Idéal Maximal — Richard Dedekind 1831 1916 formalisateur du concept d idéal Un idéal maximal est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d un anneau est dit maximal si, et seulement si, il n es …   Wikipédia en Français

  • Quotient ring — In mathematics a quotient ring, also known as factor ring or residue class ring, is a construction in ring theory, quite similar to the factor groups of group theory and the quotient spaces of linear algebra. One starts with a ring R and a two… …   Wikipedia

  • Idéal premier — Richard Dedekind 1831 1916 formalisateur du concept d idéal En algèbre commutative, un idéal premier d un anneau commutatif unitaire est un idéal tel que le quotient de l anneau par cet idéal est un anneau intègre. Ce concept généralise la notion …   Wikipédia en Français

  • Idéal maximal — Richard Dedekind 1831 1916 formalisateur du concept d idéal Un idéal maximal est un concept associé à la théorie des anneaux en mathématiques et plus précisément en algèbre. Un idéal d un anneau commutatif est dit maximal si, et seulement si, il… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”