Enrico Betti

Enrico Betti

Infobox Scientist
name = PAGENAME
box_width =


image_size =150px
caption = PAGENAME
birth_date = 21 October 1823
birth_place = Pistoia, Tuscany
death_date = 11 August 1892
death_place =
residence =
citizenship =
nationality = Italy
ethnicity =
field = mathematics
work_institutions =
alma_mater = University of Pisa
doctoral_advisor =
doctoral_students =
known_for = topology Betti numbers Betti's theorem
author_abbrev_bot =
author_abbrev_zoo =
influences =
influenced =
prizes =
religion =
footnotes =

Enrico Betti (21 October 182311 August 1892) was an Italian mathematician, now remembered mostly for his 1871 paper on topology that led to the later naming after him of the Betti numbers. He worked also on the theory of equations, giving early expositions of Galois theory. He also discovered Betti's theorem, a result in the theory of elasticity.

He was born in Pistoia, Tuscany. He graduated from the University of Pisa in 1846. After a time teaching, he held an appointment there from 1857. In 1858 he toured Europe with Francesco Brioschi and Felice Casorati, meeting Bernhard Riemann. Later he worked in the area of theoretical physics opened up by Riemann's work. He was also closely involved in academic politics, and the politics of the new Italian state.

Works by E. Betti

* [http://quod.lib.umich.edu/cgi/t/text/text-idx?c=umhistmath&idno=AAN8909 Opere matematiche di Enrico Betti, pubblicate per cura della R. Accademia de' lincei (2vols.)] (U. Hoepli, Milano, 1903-1913)

Further reading

*DSB
first=Ettore
last=Carruccio
title=Betti, Enrico
volume=2
pages=104-106

External links

*MacTutor Biography|id=Betti
*MathGenealogy|id=26323


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Enrico Betti — (* 21. Oktober 1823 in Pistoia/Toskana; † 11. August 1892 in Soiana) war ein italienischer Mathematiker und Ingenieur. Er wurde durch seine 1871 erschienene Arbeit über Topologie bekannt, die später zu den (von …   Deutsch Wikipedia

  • Enrico Betti — Pour les articles homonymes, voir Betti. Enrico Betti en 1900 Enrico Betti (né le 21 octobre 1823 à Pistoia, en …   Wikipédia en Français

  • Betti — is a surname, and may refer to* Betti number in topology, named for Enrico Betti * Betti s theorem in engineering theory, named for Enrico Betti * Betti reactionPeople with the surname Betti* Enrico Betti, Italian mathematician (1823 1892). *… …   Wikipedia

  • Betti — ist eine Namensvariante von Elisabeth Betti ist der Familienname folgender Personen: Biagio Betti (1535–1605), italienischer Maler Carlo Giuliano Betti, italienischer regisseur und Drehbuchautor Dino Betti van der Noot (* 1936), italienischer… …   Deutsch Wikipedia

  • Enrico — is an Italian male given name, derived from Heinrich of Germanic origin. Equivalents in other languages are Henry (English), Henri (French), Enrique (Spanish), and Henrique (Portuguese).Enrico may refer to:* Enrico IV , a play * Enrico Marini (… …   Wikipedia

  • Enrico — ist ein männlicher Vorname und Familienname. Inhaltsverzeichnis 1 Herkunft und Bedeutung 2 Varianten 3 Bekannte Namensträger 3.1 Vorname …   Deutsch Wikipedia

  • Betti's theorem — Betti s theorem, which was discovered by Enrico Betti in 1872, states that for a linear elastic structure subject to two sets of forces {Pi} i=1,...,m and {Qj}, j=1,2,...,n, the work done by the set P through the displacements produced by the set …   Wikipedia

  • Betti number — In algebraic topology, the Betti number of a topological space is, in intuitive terms, a way of counting the maximum number of cuts that can be made without dividing the space into two pieces. This defines, in fact, what is called the first Betti …   Wikipedia

  • Betti —  Cette page d’homonymie répertorie des personnes partageant un même patronyme italien. Betti est un nom de famille d origine italienne notamment porté par :Biagio Betti, peintre florentin du XVIe siècle Enrico Betti, mathématicien… …   Wikipédia en Français

  • Betti-Zahl — Im mathematischen Teilgebiet der Topologie sind die Bettizahlen (nach E. Betti) eine Folge nichtnegativer ganzer Zahlen, die globale Eigenschaften eines topologischen Raumes beschreiben. Sie sind topologische Invarianten. Inhaltsverzeichnis 1… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”