Lagrange reversion theorem

Lagrange reversion theorem

: "This page is about Lagrange reversion. For inversion, see Lagrange inversion theorem."

In mathematics, the Lagrange reversion theorem gives series or formal power series expansions of certain implicitly defined functions; indeed, of compositions with such functions.

Let "v" be a function of "x" and "y" in terms of another function "f" such that:v=x+yf(v)Then for any function "g",:g(v)=g(x)+sum_{k=1}^inftyfrac{y^k}{k!}left(fracpartial{partial x} ight)^{k-1}left(f(x)^kg'(x) ight)for small "y". If "g" is the identity:v=x+sum_{k=1}^inftyfrac{y^k}{k!}left(fracpartial{partial x} ight)^{k-1}left(f(x)^k ight)

In 1770, Joseph Louis Lagrange (1736-1813) published his power series solution of the implicit equation for "v" mentioned above. However, his solution used cumbersome series expansions of logarithms [1,2] . In 1780, Pierre-Simon Laplace (1749-1827) published a simpler proof of the theorem, which was based on relations between partial derivatives with respect to the variable x and the parameter y [3-5] . Charles Hermite (1822-1901) presented the most straightforward proof of the theorem by using contour integration [6-8] .

Lagrange's reversion theorem is used to obtain numerical solutions to Kepler's equation.

imple proof

We start by writing:g(v) = int dz delta(y f(z) - z + x) g(z) (1-y f'(z))Writing the delta-function as an integral we have:g(v) = int dz int frac{dk}{2pi} exp(ik [y f(z) - z + x] ) g(z) (1-y f'(z)) :=sum_{n=0}^infty int dz int frac{dk}{2pi} frac{(ik y f(z))^n}{n!} g(z) (1-y f'(z)) e^{ik(x-z)} :=sum_{n=0}^infty left(frac{partial}{partial x} ight)^nint dz int frac{dk}{2pi} frac{(y f(z))^n}{n!} g(z) (1-y f'(z)) e^{ik(x-z)} The integral over "k" then gives delta(x-z) and we have:g(v) =sum_{n=0}^infty left(frac{partial}{partial x} ight)^n left [ frac{(y f(x))^n}{n!} g(x) (1-y f'(x)) ight] : =sum_{n=0}^infty left(frac{partial}{partial x} ight)^n left [ frac{y^n f(x)^n g(x)}{n!} - frac{y^{n+1{(n+1)!}left{ (g(x) f(x)^{n+1})' - g'(x) f(x)^{n+1} ight} ight] Rearranging the sum and cancelling then gives the result:g(v)=g(x)+sum_{k=1}^inftyfrac{y^k}{k!}left(fracpartial{partial x} ight)^{k-1}left(f(x)^kg'(x) ight)

References

[1] Lagrange, Joseph Louis (1768) "Nouvelle méthode pour résoudre les équations littérales par le moyen des séries," "Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin", vol. 24, pages 251-326. (Available on-line at: http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=41070 .)

[2] Lagrange, Joseph Louis, "Oeuvres", [Paris, 1869] , Vol. 2, page 25; Vol. 3, pages 3-73.

[3] Laplace, Pierre Simon de (1777) "Mémoire sur l'usage du calcul aux différences partielles dans la théories des suites," "Mémoires de l'Académie Royale des Sciences de Paris," vol. , pages 99-122.

[4] Laplace, Pierre Simon de, "Oeuvres" [Paris, 1843] , Vol. 9, pages 313-335.

[5] Laplace's proof is presented in:

Goursat, Edouard, "A Course in Mathematical Analysis" (translated by E.R. Hedrick and O. Dunkel) [N.Y., N.Y.: Dover, 1959] , Vol. I, pages 404-405. [6] Hermite, Charles (1865) "Sur quelques développements en série de fonctions de plusieurs variables," "Comptes Rendus de l'Académie des Sciences des Paris", vol. 60, pages 1-26.

[7] Hermite, Charles, "Oeuvres" [Paris, 1908] , Vol. 2, pages 319-346.

[8] Hermite's proof is presented in:

(i) Goursat, Edouard, "A Course in Mathematical Analysis" (translated by E. R. Hedrick and O. Dunkel) [N.Y., N.Y.: Dover, 1959] , Vol. II, Part 1, pages 106-107. (ii) Whittaker, E.T. and G.N. Watson, "A Course of Modern Analysis", 4th ed. [Cambridge, England: Cambridge University Press, 1962] pages 132-133.

External links

* [http://mathworld.wolfram.com/LagrangeInversionTheorem.html Lagrange Inversion Reversion Theorem] on MathWorld
* [http://www.quantlet.com/mdstat/scripts/xfg/html/xfghtmlnode8.html Cornish-Fisher expansion] , an application of the theorem
* [http://info.ifpan.edu.pl/firststep/aw-works/fsII/mul/mueller.html Article] on equation of time contains an application to Kepler's equation


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Lagrange inversion theorem — In mathematical analysis, the Lagrange inversion theorem, also known as the Lagrange Bürmann formula, gives the Taylor series expansion of the inverse function of an analytic function. Theorem statementSuppose the dependence between the variables …   Wikipedia

  • Teorema de inversión de Lagrange — En el ámbito del análisis matemático, el teorema de inversión de Lagrange, también denominado fórmula de Lagrange Bürmann , permite obtener la expansión en serie de Taylor de la función inversa de una función analítica. Contenido 1 Enunciado del… …   Wikipedia Español

  • Theoreme d'inversion de Lagrange — Théorème d inversion de Lagrange En mathématiques, le théorème d inversion de Lagrange fournit le développement en série de certaines fonctions définies implicitement. Si z est une fonction de x, de y et d une fonction f tel que z = x + yf(z)… …   Wikipédia en Français

  • Théorème d'inversion de lagrange — En mathématiques, le théorème d inversion de Lagrange fournit le développement en série de certaines fonctions définies implicitement. Si z est une fonction de x, de y et d une fonction f tel que z = x + yf(z) alors pour toute fonction g, on a… …   Wikipédia en Français

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • Pierre-Simon Laplace — Laplace redirects here. For the city in Louisiana, see LaPlace, Louisiana. For the joint NASA ESA space mission, see Europa Jupiter System Mission. Pierre Simon, marquis de Laplace Pierre Simon Laplace (1749–1827). Posthumous portrait …   Wikipedia

  • List of combinatorics topics — This is a list of combinatorics topics.A few decades ago it might have been said that combinatorics is little more than a way to classify poorly understood problems, and some standard remedies. Great progress has been made since 1960.This page is …   Wikipedia

  • Laplace limit — In mathematics, the Laplace limit is the maximum value of the eccentricity for which the series solution to Kepler s equation converges. It is approximately: 0.66274 34193 49181 58097 47420 97109 25290.Kepler s equation M = E − ε sin E relates… …   Wikipedia

  • Предел Лапласа — В математике, предел Лапласа  это максимальное значение эксцентриситета, при котором решение уравнения Кеплера, выраженное в виде ряда, сходится. Это значение приближённо равно 0.66274 34193 49181 58097 47420 97109 25290. Уравнение Кеплера… …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”