- Tensile structure
A

**tensile structure**is aconstruction of elements carrying onlytension and nocompression orbending . The term tensile should not be confused withtensegrity , which is a structural form with both tension and compression elements.Most tensile structures are supported by some form of compression or bending elements, such as masts (as in The O

_{2}, formerly theMillennium Dome ), compression rings or beams.Tensile membrane structures are most often used as roofs as they can economically and attractively span large distances.

**History**This form of construction has only become well understood and widespread in large structures in the latter part of the twentieth century. Tensile structures have long been used in tents, where the guy ropes provide pre-tension to the fabric and allow it to withstand loads.

Russian engineer

Vladimir Shukhov was one of the first to develop practical calculations of stresses and deformations of tensile structures, shells and membranes. Shukhov designed eight tensile structures andthin-shell structure s exhibition pavilions for the Nizhny Novgorod Fair of 1896, covering the area of 27,000 square meters. A very early large-scale use of a membrane-covered tensile structure is theSidney Myer Music Bowl , constructed in 1958.Antonio Gaudi used the concept in reverse to create a compression-only structure for the Colonia Guell Church. He created a hanging tensile model of the church to calculate the compression forces and to experimentally determine the column and vault geometries.

The concept was later pioneered by German architect and engineer

Frei Otto , who first used the idea in the construction of the German pavilion atExpo 67 in Montreal. Otto next used the idea for the roof of the Olympic Stadium for the1972 Summer Olympics inMunich .Since the 1960s, tensile structures have been championed by

design ers andengineer s such asOve Arup ,Buro Happold ,Walter Bird of Birdair, Inc. ,Frei Otto ,Eero Saarinen ,Horst Berger ,Matthew Nowicki ,Jorg Schlaich , the duo ofNicholas Goldsmith &Todd Dalland atFTL Design & Engineering Studio andDavid Geiger .Steady technological progress has increased the popularity of fabric-roofed structures. The low weight of the materials makes construction easier and cheaper than standard designs, especially when vast open spaces have to be covered.

**Types of structure with significant tension members****Linear structures***

Suspension bridges

*Draped cables

*Cable-stayedbeams ortrusses

*Cable trusses

*Straight tensioned cables**Three-dimensional structures***

Bicycle wheel (can be used as a roof in a horizontal orientation)

*3D cable trusses

*Tensegrity structures

*Tensairity structures**urface-stressed structures***Prestressed

membranes

*Pneumatically stressed membranes**Cable and membrane structures****Membrane materials**Common materials for doubly-curved fabric structures are

PTFE coatedfibreglass and PVC coatedpolyester . These are woven materials with different strengths in different directions. Thewarp fibres (those fibres which are originally straight—equivalent to the starting fibres on a loom) can carry greater load than theweft or fill fibres, which are woven between thewarp fibres.Other structures make use of

ETFE film, either as single layer or in cushion form (which can be inflated, to provide good insulation properties or for aesthetic effect—as on theAllianz Arena inMunich ).ETFE cushions can also be etched with patterns in order to let different levels of light through when inflated to different levels. They are most often supported by a structural frame as they cannot derive their strength from double curvature.**Cables**Cables can be of

mild steel ,high strength steel (drawn carbon steel),stainless steel ,polyester or aramid fibres. Structural cables are made of a series of small strands twisted or bound together to form a much larger cable. Steel cables are either spiral strand, where circular rods are twisted together and "glued" using a polymer, or locked coil strand, where individual interlocking steel strands form the cable (often with a spiral strand core).Spiral strand is slightly weaker than locked coil strand. Steel spiral strand cables have a

Young's modulus , "E" of 150±10 kN/mm² (or 150±10 GPa) and come in sizes from 3 to 90 mm diameter. Spiral strand suffers from construction stretch, where the strands compact when the cable is loaded. This is normally removed by pre-stretching the cable and cycling the load up and down to 45% of the ultimate tensile load.Locked coil strand typically has a Young's Modulus of 160±10 kN/mm² and comes in sizes from 20 mm to 160 mm diameter.

The properties of the individuals strands of different materials are shown in the table below, where UTS is

ultimate tensile strength , or the breaking load:**tructural forms**Air-supported structure s are a form of tensile structures where the fabric envelope is supported by pressurised air only.The majority of fabric structures derive their strength from their doubly-curved shape. By forcing the fabric to take on double-curvature [

*http://www-ec.njit.edu/civil/fabric/tension.html*] the fabric gains sufficientstiffness to withstand the loads it is subjected to (for examplewind andsnow loads). In order to induce an adequately doubly curved form it is most often necessary to pretension or prestress the fabric or its supporting structure.**Form finding**The behaviour of structures which depend upon prestress to attain their strength is non-linear, so anything other than a very simple cable has, until the 1990s, been very difficult to design. The most common way to design doubly curved fabric structures was to construct scale models of the final buildings in order to understand their behaviour and to conduct

form-finding exercises. Such scale models often employed stocking material or tights, or soap film, as they behave in a very similar way to structural fabrics (they cannot carry shear).Soap films have uniform stress in every direction and require a closed boundary to form. They naturally form a minimal surface—the form with minimal area and embodying minimal energy. They are however very difficult to measure. For large films the self-weight of the film can seriously and adversely affect the form.

For a membrane with curvature in two directions, the basic equation of equilibrium is:

$w\; =\; frac$t_1R_1 + fract_2R_2

where:

*"R"

_{1}and "R"_{2}are the principal radii of curvature for soap films or the directions of the warp and weft for fabrics

*"t"_{1}and "t"_{2}are the tensions in the relevant directions

*"w" is the load per square metreLines of

principal curvature have no twist and intersect other lines of principal curvature at right angles.A

geodesic orgeodetic line is usually the shortest line between two points on the surface. These lines are typically used when defining the cutting pattern seam-lines. This is due to their relative straightness after the planar cloths have been generated, resulting in lower cloth wastage and closer alignment with the fabric weave.In a pre-stressed but unloaded surface "w" = 0, so $frac$t_1R_1 = -fract_2R_2.

In a soap film surface tensions are uniform in both directions, so "R"

_{1}= −"R"_{2}.It is now possible to use powerful

non-linear numerical analysis programs (orfinite element analysis to formfind and design fabric and cable structures. The programs must allow for large deflections.The final shape, or form, of a fabric structure depends upon:

*shape, or pattern, of the fabric

*the geometry of the supporting structure (such as masts, cables, ringbeams etc)

*the pretension applied to the fabric or its supporting structureIt is important that the final form will not allow

ponding of water, as this can deform the membrane and lead to local failure or progressive failure of the entire structure.Snow loading can be a serious problem for membrane structure, as the snow often will not flow off the structure as water will. For example, this has in the past caused the (temporary) collapse of the

Minnesota Metrodome , an air-inflated structure. Some structures prone to ponding use heating to melt snow which settles on them.There are many different doubly-curved forms, many of which have special mathematical properties. The most basic doubly curved from is the saddle shape, which can be a

hyperbolic paraboloid (not all saddle shapes are hyperbolic paraboloids). This is a doubleruled surface and is often used in both in lightweight shell structures (seehyperboloid structures ). True ruled surfaces are rarely found in tensile structures. Other forms areanticlastic saddles, various radial, conical tent forms and any combination of them.**Pretension****Pretension**is tension artificially induced in the structural elements in addition to any self-weight or imposed loads they may carry. It is used to ensure that the normally very flexible structural elements remain stiff under all possible loads.A day to day example of pretension is a shelving unit supported by wires running from floor to ceiling. The wires hold the shelves in place because they are tensioned - if the wires were slack the system would not work.

Pretension can be applied to a membrane by stretching it from its edges or by pretensioning cables which support it and hence changing its shape. The level of pretension applied determines the shape of a membrane structure.

**imple mathematics of cables****Transversely and uniformly loaded cable**For a cable spanning between two supports the simplifying assumption can be made that it forms a circular arc (of radius "R").

**By equilibrium:**The horizontal and vertical reactions:

:$H\; =\; frac$wS^28d :$V\; =\; frac$wS2

**By**geometry :The length of the cable:

:$L\; =\; 2Rsin^\{-1\}(frac$S2R)

The tension in the cable:

:$T\; =\; sqrt\{H^2+V^2\}$

By substitution:

:$T\; =\; sqrt$(fracwS^28d})^2 + ({fracwS2})^2}

The tension is also equal to:

:$T\; =\; wR$

The extension of the cable upon being loaded is (from

Hooke's Law , where the axial stiffness, "k," is equal to $k\; =\; frac$EAL)::$e\; =\; frac$TLEA

where "E" is the

Young's modulus of the cable and "A" is its cross-sectionalarea .If an initial pretension, $T\_0$ is added to the cable, the extension becomes:

:$e\; =\; L\; -\; L\_0\; =\; frac$L_0(T-T_0)EA

Combining the above equations gives:

:$\{frac$L_0(T-T_0)EA}+L_0 = frac2TSin^{-1}(fracwS2T)w

By plotting the left hand side of this equation against "T," and plotting the right hand side on the same axes, also against "T," the intersection will give the actual equilibrium tension in the cable for a given loading "w" and a given pretension $T\_0$.

**Cable with central point load**A similar solution to that above can be derived where:

**By equilibrium:**:$W\; =\; frac$4TdL

:$d\; =\; frac$WL4T

**By geometry:**:$L\; =\; sqrt\{S^2\; +\; 4d^2\}\; =\; sqrt\{S^2\; +\; 4(frac$WL2T)^2}

This gives the following relationship:

:$L\_0\; +\; frac$L_0(T-T_0)EA = sqrt{S^2 + 4(fracW(L_0+fracL_0(T-T_0)EA)4T)^2}

As before, plotting the left hand side and right hand side of the equation against the tension, "T," will give the equilibrium tension for a given pretension, $T\_0$ and load, "W".

**Tensioned cable oscillations**The fundamental

natural frequency , "f"_{1}of tensioned cables is given by::$f\_1=sqrt\{frac$(fracTm)2L}

where: "T" = tension in

newton s, "m" =mass in kilograms and "L" = span length.**Notable structures***

Shukhov Rotunda ,Russia , 1896

*Canada Place ,Vancouver, British Columbia

*Yoyogi National Gymnasium byKenzo Tange ,Yoyogi Park ,Tokyo ,Japan

*Ingalls Rink ,Yale University byEero Saarinen

*Olympiapark,Munich byFrei Otto

*Sidney Myer Music Bowl ,Melbourne

* The O_{2}(formerly theMillennium Dome ,London byBuro Happold and Richard Rogers Partnership

*Dorton Arena , Raleigh

*Georgia Dome ,Atlanta byHeery andWeidlinger Associates

*Denver International Airport ,Denver

*Pengrowth Saddledome , Calgary byGraham McCourt Architects andJan Bobrowski and Partners

*Scandinavium ,Gothenburg ,Sweden

*Hong Kong Museum of Coastal Defence

*Ashford Retail Village, Kent, UK, byBuro Happold ,Richard Rogers andArchiten Landrell

*Barclays Bank Headquarters,London

*Beckham Academy,London byBuro Happold

*Butlins Skyline Pavilion, Minehead, UK

*Carlos Moseley Music Pavilion,New York, NY

*Modernization of the Central Railway Station,Sofia ,Bulgaria

*Columbus Center,Baltimore, Maryland

*Finnish Chancery,Washington, DC

*Imagination Headquarters,London

*National Symphony Orchestra,Washington, DC

*Pier6 Music Pavilion,Baltimore, Maryland

*Plashet Bridge,London by Birds Portchmouth Russum Architects**Gallery of well known tensile structures****ee also***

Thin-shell structure

*Hyperboloid structure

*Vladimir Shukhov

*Frei Otto

*Tensegrity

*Tensairity

*Gridshell

*Gaussian curvature

*Principal curvature

*Geodesics **External links*** [

*http://en.structurae.de/structures/data/index.cfm?ID=s0000385 Rotunda 1896 - World first steel tensile structure by V. Shukhov*] , [*http://upload.wikimedia.org/wikipedia/commons/9/9b/Rotunda_by_Vladimir_Shukhov_Nizhny_Novgorod_1896.jpg*] , [*http://upload.wikimedia.org/wikipedia/commons/d/dd/Rotunda_and_rectangular_pavilion_by_Vladimir_Shukhov_in_Nizhny_Novgorod_1896.jpg*]

* [*http://www.arcaro.org/tension/ Tension Structures*]

* [*http://www.tensionstructures.com/terminology.htm Tension Structure Terminology*] Terminology for tensioned fabric structures.

* [*http://www.tensinet.com/ TensiNet*] The Communication Network for Tensile Structures in Europe.

* [*http://www.ifai.com/Awning/FabricArchitecturemagazine.cfm Fabric Architecture*] Bimonthly magazine published by "Industrial Fabrics Association International".

* [*http://www.membranes24.com/ Membranes24*] Free online design tool for form finding of membrane structures.

* [*http://www.formfinder.at Formfinder*] Free tool for designing and form finding of membrane structures.

* [*http://www.forten32.com ForTen 3000*] Software package for form-finding,structural analysis and pattern making.

* [*http://www.ixcube.com RhinoMembrane*] Rhinoceros plugin for form-finding tensile structures,pneumatic structures.

* [*http://dspace.mit.edu/bitstream/handle/1721.1/39277/170977058.pdf;jsessionid=14135EBAD5607E7D0B3EFA0D27842C0D?sequence=1 Past and Future of Grid Shell Structures*]**Further reading*** "The Nijni-Novgorod exhibition: Water tower, room under construction, springing of 91 feet span", "The Engineer", № 19.3.1897, P.292-294, London, 1897.

*Horst Berger , "Light structures, structures of light: The art and engineering of tensile architecture" (Birkhäuser Verlag, 1996) ISBN 3-7643-5352-X

*Alan Holgate, "The Art of Structural Engineering: The Work of Jorg Schlaich and his Team" (Books Britain, 1996) ISBN 3-930698-67-6

* [*http://spec.lib.vt.edu/IAWA/inventories/English.html Elizabeth Cooper English*] : [*http://repository.upenn.edu/dissertations/AAI9989589/ “Arkhitektura i mnimosti”: The origins of Soviet avant-garde rationalist architecture in the Russian mystical-philosophical and mathematical intellectual tradition”,*] a dissertation in architecture, 264 p., University of Pennsylvania, 2000.

* “Vladimir G. Suchov 1853–1939. Die Kunst der sparsamen Konstruktion.”, Rainer Graefe, Jos Tomlow und andere, 192 S., Deutsche Verlags-Anstalt, Stuttgart, 1990, ISBN 3-421-02984-9.

*Wikimedia Foundation.
2010.*