Laguerre polynomials

Laguerre polynomials

In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834 – 1886), are the canonical solutions of Laguerre's equation:

:x,y" + (1 - x),y' + n,y = 0,

which is a second-order linear differential equation.This equation has nonsingular solutions only if "n" is a non-negative integer.

These polynomials, usually denoted "L"0, "L"1, ..., are a polynomial sequence which may be defined by the Rodrigues formula

:L_n(x)=frac{e^x}{n!}frac{d^n}{dx^n}left(e^{-x} x^n ight).

They are orthogonal to each other with respect to the inner product given by

:langle f,g angle = int_0^infty f(x) g(x) e^{-x},dx.

The sequence of Laguerre polynomials is a Sheffer sequence.

The Laguerre polynomials arise in quantum mechanics, in the radial part of the solutionof the Schrödinger equation for a one-electron atom.

Physicists often use a definition for the Laguerre polynomials that is larger,by a factor of "n"!, than the definition used here.

The first few polynomials

These are the first few Laguerre polynomials:


"n"L_n(x),
01,
1-x+1,
2{scriptstylefrac{1}{2 (x^2-4x+2) ,
3{scriptstylefrac{1}{6 (-x^3+9x^2-18x+6) ,
4{scriptstylefrac{1}{24 (x^4-16x^3+72x^2-96x+24) ,
5{scriptstylefrac{1}{120 (-x^5+25x^4-200x^3+600x^2-600x+120) ,
6{scriptstylefrac{1}{720 (x^6-36x^5+450x^4-2400x^3+5400x^2-4320x+720) ,

Recursive definition

We can also define the Laguerre polynomials recursively, defining the first two polynomials as

:L_0(x) = 1,

:L_1(x) = 1 - x,

and then using the recurrence relation for any "k" ≥ 1:

:L_{k + 1}(x) = frac{1}{k + 1} left( (2k + 1 - x)L_k(x) - k L_{k - 1}(x) ight).

Generalized Laguerre polynomials

The orthogonality property stated above is equivalent to saying that if "X" is an exponentially distributed random variable with probability density function

:f(x)=left{egin{matrix} e^{-x} & mbox{if} x>0, \ 0 & mbox{if} x<0, end{matrix} ight.

then

:E left [ L_n(X)L_m(X) ight] =0 mbox{whenever} n eq m.

The exponential distribution is not the only gamma distribution. A polynomial sequence orthogonal with respect to the gamma distribution whose probability density function is, for "α" > −1,

:f(x)=left{egin{matrix} x^alpha e^{-x}/Gamma(1+alpha) & mbox{if} x>0, \ 0 & mbox{if} x<0, end{matrix} ight.

(see gamma function) is given by the defining Rodrigues equation for the generalized Laguerre polynomials:

:L_n^{(alpha)}(x)={x^{-alpha} e^x over n!}{d^n over dx^n} left(e^{-x} x^{n+alpha} ight).

These are also sometimes called the associated Laguerre polynomials. The simple Laguerre polynomials are recovered from the generalized polynomials by setting α = 0:

:L^{(0)}_n(x)=L_n(x).

Explicit examples and properties of generalized Laguerre polynomials

The generalized Laguerre polynomial of degree n is (as follows from applying Leibniz's theorem for differentiation of a product to the defining Rodrigues formula)

:L_n^{(alpha)} (x) = sum_{i=0}^n (-1)^i {n+alpha choose n-i} frac{x^i}{i!}.

* the coefficient of the leading term is (−1)"n"/"n"!;
* the constant term, which is the value at the origin, is L_n^{(alpha)}(0)= {n+alphachoose n} approx frac{n^alpha}{Gamma(alpha+1)};
* "L""n"("α") has "n" real, strictly positive roots which are all in the open interval (0, n+alpha+ (n-1) sqrt{n+alpha}).
* Derived from the root test and convergent series below is limsup_{n o infty} sqrt [n] = 1.

* The first few generalized Laguerre polynomials are:

: L_0^{(alpha)} (x) = 1

: L_1^{(alpha)}(x) = -x + alpha +1

: L_2^{(alpha)}(x) = frac{x^2}{2} - (alpha + 2)x + frac{(alpha+2)(alpha+1)}{2}

: L_3^{(alpha)}(x) = frac{-x^3}{6} + frac{(alpha+3)x^2}{2} - frac{(alpha+2)(alpha+3)x}{2}+ frac{(alpha+1)(alpha+2)(alpha+3)}{6}

* The explicit formula gives rise to compute Laguerre's polynomial using Horner's method as follows:

function LaguerreL(n, alpha, x) { LaguerreL:= 1; bin:= 1 for i:= n to 1 step -1 { bin:= bin* (alpha+ i)/ (n+ 1- i) LaguerreL:= bin- x* LaguerreL/ i } return LaguerreL; }

Recurrence relations

Laguerre's polynomials satisfy the recurrence relations

:L_n^{(alpha+eta+1)}(x+y)= sum_{i=0}^n L_i^{(alpha)}(x) L_{n-i}^{(eta)}(y),

in particular

:L_n^{(alpha+1)}(x)= sum_{i=0}^n L_i^{(alpha)}(x) and L_n^{(alpha)}(x)= sum_{i=0}^n {alpha-eta+n-i-1 choose n-i} L_i^{(eta)}(x).

moreover

:L_n^{(alpha)}(x)= {n+alpha choose n} - frac{x}{n} sum_{i=0}^{n-1} fracn+alpha choose n-1-in-1 choose iL_i^{(alpha+1)}(x).

They can be used to derive

:L_n^{(alpha)}(x) = L_n^{(alpha+1)}(x) - L_{n-1}^{(alpha+1)}(x)

and

:n L_n^{(alpha)}(x) = (n + alpha )L_{n-1}^{(alpha)}(x) - x L_{n-1}^{(alpha+1)}(x);

combined they give this additional, popular recurrence relation

:L_{n + 1}^{(alpha)}(x) = frac{1}{n + 1} left( (2n + 1 + alpha - x)L_n^{(alpha)}(x) - (n + alpha) L_{n - 1}^{(alpha)}(x) ight).

A somewhat curious identity, valid for integer i and n, is: frac{(-x)^i}{i!} L_n^{(i-n)}(x) = frac{(-x)^n}{n!} L_i^{(n-i)}(x).

Derivatives of generalized Laguerre polynomials

Differentiating the power series representation of a generalized Laguerre polynomial "k" times leads to

:frac{mathrm d^k}{mathrm d x^k} L_n^{(alpha)} (x)= (-1)^k L_{n-k}^{(alpha+k)} (x),;

moreover, this following equation holds

:frac{1}{k!} frac{mathrm d^k}{mathrm d x^k} x^alpha L_n^{(alpha)} (x) = {n+alpha choose k} x^{alpha-k} L_n^{(alpha-k)}(x),

which generalizes with Cauchy's formula to

:L_n^{(alpha+ Delta alpha)}(x) = Delta alpha {alpha+ Delta alpha+ n choose Delta alpha} int_0^x frac{t^alpha (x-t)^{Delta alpha-1{x^{alpha+ Delta alpha L_n^{(alpha)}(t),dt.

The generalized associated Laguerre polynomials obey the differential equation

:x L_n^{(alpha) primeprime}(x) + (alpha+1-x)L_n^{(alpha)prime}(x) + n L_n^{(alpha)}(x)=0.,

Orthogonality

The associated Laguerre polynomials are orthogonal over [0, &infin;) with respect to the measure with weighting function "x""α" "e" −"x":

:int_0^{infty}x^alpha e^{-x} L_n^{(alpha)}(x)L_m^{(alpha)}(x)dx=frac{Gamma(n+alpha+1)}{n!}delta_{n,m}.

The associated, symmetric kernel polynomial has the representations

:egin{align}K_n^{(alpha)}(x,y)&{:=}frac{1}{Gamma(alpha+1)} sum_{i=0}^n frac{L_i^{(alpha)}(x) L_i^{(alpha)}(y)}alpha+i choose i\

&{=}frac{1}{Gamma(alpha+1)} frac{L_n^{(alpha)}(x) L_{n+1}^{(alpha)}(y) - L_{n+1}^{(alpha)}(x) L_n^{(alpha)}(y)}{frac{x-y}{n+1} {n+alpha choose n \

&{=}frac{1}{Gamma(alpha+1)}sum_{i=0}^n frac{x^i}{i!} frac{L_{n-i}^{(alpha+i)}(x) L_{n-i}^{(alpha+i+1)}(y)}alpha+n choose n}{n choose i;end{align}

recursively

:K_n^{(alpha)}(x,y)=frac{y}{alpha+1} K_{n-1}^{(alpha+1)}(x,y)+ frac{1}{Gamma(alpha+1)} frac{L_n^{(alpha+1)}(x) L_n^{(alpha)}(y)}alpha+n choose n.

Moreover,

: y^alpha e^{-y} K_n^{(alpha)}(cdot, y) ightarrow delta(y- , cdot),

in the associated "L"2 [0, &infin;)-space.

The following integral is needed in the quantum mechanical treatment of the hydrogen atom,

:int_0^{infty}x^{alpha+1} e^{-x} left [L_n^{(alpha)} ight] ^2 dx=frac{(n+alpha)!}{n!}(2n+alpha+1).

eries expansions

Let a function have the (formal) series expansion

: f(x)= sum_{i=0} f_i^{(alpha)} L_i^{(alpha)}(x).

Then

:f_i^{(alpha)}=int_0^infty frac{L_i^{(alpha)}(x)}i+ alpha choose i cdot frac{x^alpha e^{-x{Gamma(alpha+1)} cdot f(x) ,dx .

The series converges in the assotiated Hilbert space L^2 [0,infty), iff

:| f |_{L^2}^2 := int_0^infty frac{x^alpha e^{-x{Gamma(alpha+1)} | f(x)|^2 dx = sum_{i=0} {i+alpha choose i} |f_i^{(alpha)}|^2 < infty.

A related series expansion is

: e^{-gamma x} cdot f(x(1+gamma))= sum_{i=0} frac{L_i^{(alpha)}(x)}{(1+gamma)^{i+alpha+1 sum_{n=0}^i gamma^{i-n} {i choose n} f_n^{(alpha)};

in particular

:e^{-gamma x} cdot L_n^{(alpha)}(x(1+gamma))= sum_{i=n} frac{L_i^{(alpha)}(x)}{(1+gamma)^{i+alpha+1 gamma^{i-n} {i choose n},

which follows from

:L_n^{(alpha)}left(frac{x}{1+gamma} ight)= frac{1}{(1+gamma)^n} sum_{i=0}^n gamma^{n-i} {n+alpha choose n-i} L_i^{(alpha)}(x).

Secondly,

:frac{x^eta f(x)}{Gamma(eta+1)}= {alpha+eta choose eta} sum_{i=0} frac{L_i^{(alpha)}(x)}alpha+i choose i sum_{n=0}^i (-1)^{i-n} {eta choose i-n} {alpha+eta+n choose n} f_n^{(alpha+eta)},

a consequence derived from

:frac{x^eta L_n^{(alpha+eta)}(x)}{Gamma(eta+1)} = {alpha+ eta choose eta} {alpha+ eta+ n choose n} sum_{i=n} (-1)^{i-n} {eta choose i-n} frac{L_i^{(alpha)}(x)}alpha+i choose i for operatorname{Re}{(alpha+ 2eta)}>-1.

More and other examples

Monomials are representated as

:frac{x^n}{n!}= sum_{i=0}^n (-1)^i {n+ alpha choose n-i} L_i^{(alpha)}(x),

which lead directly to

:e^{-gamma x}= sum_{i=0} frac{gamma^i}{(1+gamma)^{i+alpha+1 L_i^{(alpha)}(x) (convergent, iff operatorname{Re}{(gamma)} > -frac{1}{2})

and, even more generally,

: frac{x^eta e^{-gamma x{Gamma(eta+1)}= {alpha+eta choose alpha} sum_{i=0} frac{L_i^{(alpha)}(x)}{ {alpha+i choose i sum_{j=0}^i frac{(-1)^j}{(1+gamma)^{alpha+ eta+ j+ 1 {alpha+eta+j choose j} {alpha+i choose i-j}.

For eta a non-negative integer this simplifies to

:frac{x^n e^{-gamma x{n!}= sum_{i=0} frac{gamma^i L_i^{(alpha)}(x)}{(1+gamma)^{i+n+alpha+1 sum_{j=0}^n (-1)^{n-j} gamma^j {n+alpha choose j} {i choose n-j},

for gamma=0 to

:frac{x^eta}{Gamma(eta+1)} = {alpha+ eta choose alpha} sum_{i=0} (-1)^i {eta choose i} frac{L_i^{(alpha)}(x)}alpha+i choose i, or:frac{x^eta L_n^{(gamma)}(x)}{Gamma(eta+1)} = {alpha+ eta choose alpha} sum_{i=0} frac{L_i^{(alpha)}(x)}alpha+i choose isum_{j=0}^n (-1)^{i-j} {n+ gamma choose n-j} {eta+j choose i} {alpha+ eta+ j choose j}.

The Bessel function J_alpha can be expressed (using an arbitrarily chosen parameter t) as

:frac{J_alpha(x)}{left( frac{x}{2} ight)^alpha}= frac{e^{-t{Gamma(alpha+1)} sum_{i=0} frac{L_i^{(alpha)}left( frac{x^2}{4 t} ight)}i+ alpha choose i frac{t^i}{i!}.

The lower incomplete Gamma function has the representations :frac{gamma(s;z)}{t^s Gamma(s)}= frac{left(frac{z}{t} ight)^alpha}{Gamma(alpha+1)} sum_{i=0} frac{L_i^{(alpha)}left(frac{z}{t} ight)}alpha+i choose i sum_{j=0}^i frac{(-1)^j}{(1+t)^{s+j{s-1+j choose j}{alpha-1+i choose i-j},and:frac{gamma(s;z)}{t^s Gamma(s)}= {alpha+s choose alpha+1} sum_{i=0} fracalpha+ i+1choose i+1}- L_{i+1}^{(alpha)}left( frac{z}{t} ight)}alpha+ i+1choose i sum_{j=0}^i frac{(-1)^j}{(1+t)^{alpha+1+s+j} } {alpha+s+j choose j}{alpha+i+1 choose i-j}.

As contour integral

The polynomials may be expressed in terms of a contour integral

:L_n^{(alpha)}(x)=frac{1}{2pi i}ointfrac{e^{-frac{x t}{1-t}{(1-t)^{alpha+1},t^{n+1 ; dt

where the contour circles the origin once in a counterclockwise direction.

Relation to Hermite polynomials

The generalized Laguerre polynomials are related to the Hermite polynomials:

:H_{2n}(x) = (-1)^n 2^{2n} n! L_n^{(-1/2)} (x^2)

and

:H_{2n+1}(x) = (-1)^n 2^{2n+1} n! x L_n^{(1/2)} (x^2)

where the H_n(x) are the Hermite polynomials based on the weighting function exp{(-x^2)}, the so-called "physicist's version."

Because of this, the generalized Laguerre polynomials arise in the treatment of the quantum harmonic oscillator.

Relation to hypergeometric functions

The Laguerre polynomials may be defined in terms of hypergeometric functions, specifically the confluent hypergeometric functions, as

:L^{(alpha)}_n(x) = {n+alpha choose n} M(-n,alpha+1,x) =frac{(alpha+1)_n} {n!} ,_1F_1(-n,alpha+1,x)

where (a)_n is the Pochhammer symbol (which in "this" case represents the "rising factorial").

External links

* [http://www.physics.drexel.edu/~tim/open/hydrofin A quick informal derivation of the Laguerre polynomial in the context of the quantum mechanics of hydrogen]

References

*
* Eric W. Weisstein, " [http://mathworld.wolfram.com/LaguerrePolynomial.html Laguerre Polynomial] ", From MathWorld&mdash;A Wolfram Web Resource.
*


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Continuous q-Laguerre polynomials — In mathematics, the continuous q Laguerre polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their… …   Wikipedia

  • Laguerre's method — In numerical analysis, Laguerre s method is a root finding algorithm tailored to polynomials. In other words, Laguerre s method can be used to solve numerically the equation : p(x) = 0 for a given polynomial p . One of the most useful properties… …   Wikipedia

  • Classical orthogonal polynomials — In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials, and consist of the Hermite polynomials, the Laguerre polynomials, the Jacobi polynomials together with their special cases the ultraspherical… …   Wikipedia

  • Hermite polynomials — In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence that arise in probability, such as the Edgeworth series; in combinatorics, as an example of an Appell sequence, obeying the umbral calculus; in numerical… …   Wikipedia

  • Orthogonal polynomials — In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the… …   Wikipedia

  • Polynôme de Laguerre — En mathématiques, les polynômes de Laguerre, nommés d après Edmond Laguerre (1834 1886), sont les solutions de l équation de Laguerre : qui est une équation différentielle linéaire du second ordre. Cette équation a des solutions non… …   Wikipédia en Français

  • Denisyuk polynomials — In mathematics, Denisyuk polynomials Den(x) or Mn(x) are generalizations of the Laguerre polynomials introduced by Denisyuk (1954) given by the generating function (Boas Buck 1958, p.41). See also References Boas, Ralph P.; Buck, R. Creighton… …   Wikipedia

  • Edmond Laguerre — Edmond Nicolas Laguerre (April 9 1834, Bar le Duc – August 14 1886, Bar le Duc) was a French mathematician, a member of the Académie française (1885). His main works were in the areas of geometry and complex analysis. He also investigated… …   Wikipedia

  • Charlier polynomials — In mathematics, Charlier polynomials (also called Poisson–Charlier polynomials) are a family of orthogonal polynomials introduced by Carl Charlier. They are given in terms of the generalized hypergeometric function by where L are Laguerre… …   Wikipedia

  • Meixner polynomials — Not to be confused with Meixner–Pollaczek polynomials. In mathematics, Meixner polynomials (also called discrete Laguerre polynomials) are a family of discrete orthogonal polynomials introduced by Josef Meixner (1934). They are given in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”