Normal extension

Normal extension

In abstract algebra, an algebraic field extension L/K is said to be normal if L is the splitting field of a family of polynomials in K[X]. Bourbaki calls such an extension a quasi-Galois extension.

Contents

Equivalent properties and examples

The normality of L/K is equivalent to each of the following properties:

For example, \mathbb{Q}(\sqrt{2}) is a normal extension of \mathbb{Q}, since it is a splitting field of x2 − 2. On the other hand, \mathbb{Q}(\sqrt[3]{2}) is not a normal extension of \mathbb{Q} since the polynomial x3 − 2 has one root in it (namely, \sqrt[3]{2}), but not all of them (it does not have the non-real cubic roots of 2).

The fact that \mathbb{Q}(\sqrt[3]{2}) is not a normal extension of \mathbb{Q} can also be proved using the first of the two equivalent properties from above. The field \mathbb{A} of complex algebraic numbers is an algebraic closure of \mathbb{Q} containing \mathbb{Q}(\sqrt[3]{2}). On the other hand

\mathbb{Q}(\sqrt[3]{2})=\{a+b\sqrt[3]{2}+c\sqrt[3]{4}\in\mathbb{A}\,|\,a,b,c\in\mathbb{Q}\}

and, if ω is one of the two non-real cubic roots of 2, then the map

\begin{array}{rccc}\sigma:&\mathbb{Q}(\sqrt[3]{2})&\longrightarrow&\mathbb{A}\\&a+b\sqrt[3]{2}+c\sqrt[3]{4}&\mapsto&a+b\omega+c\omega^2\end{array}

is an embedding of \mathbb{Q}(\sqrt[3]{2}) in \mathbb{A} whose restriction to \mathbb{Q} is the identity. However, σ is not an automorphism of \mathbb{Q}(\sqrt[3]{2}).

For any prime p, the extension \mathbb{Q}(\sqrt[p]{2}, \zeta_p) is normal of degree p(p − 1). It is a splitting field of xp − 2. Here ζp denotes any pth primitive root of unity.

Other properties

Let L be an extension of a field K. Then:

  • If L is a normal extension of K and if E is an intermediate extension (i.e., L ⊃ E ⊃ K), then L is also a normal extension of E.
  • If E and F are normal extensions of K contained in L, then the compositum EF and E ∩ F are also normal extensions of K.

Normal closure

If K is a field and L is an algebraic extension of K, then there is some algebraic extension M of L such that M is a normal extension of K. Furthermore, up to isomorphism there is only one such extension which is minimal, i.e. such that the only subfield of M which contains L and which is a normal extension of K is M itself. This extension is called the normal closure of the extension L of K.

If L is a finite extension of K, then its normal closure is also a finite extension.

References

See also


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Normal closure — The term normal closure is used in two senses in mathematics: In group theory, the normal closure of a subset of a group is the smallest normal subgroup that contains the subset; see conjugate closure. In field theory, the normal closure of an… …   Wikipedia

  • Extension (mathematics) — In mathematics, the word extension has many uses. See:Analysis* Carathéodory s extension theorem * Continuous linear extension * M. Riesz extension theorem * Krein extension theorem * Hahn Banach theoremAlgebra* Abelian extension * Algebraic… …   Wikipedia

  • Normal (mathematics) — In mathematics, normal can have several meanings:* Surface normal, a vector (or line) that is perpendicular to a surface. * Normal component, the component of a vector that is perpendicular to a surface. ** Normal curvature, of a curve on a… …   Wikipedia

  • Extensión de Galois — Saltar a navegación, búsqueda En álgebra abstracta, una extensión de cuerpo algebraica E/K se dice extensión de Galois (o extensión galoisiana) si es una extensión normal y separable. En este caso, se puede considerar el grupo de Galois de la… …   Wikipedia Español

  • Extensión normal — Saltar a navegación, búsqueda En álgebra abstracta, una extensión de cuerpo algebraica N/K es normal si verifica alguna de las siguientes condiciones equivalentes: Para todo elemento , el polinomio irreducible de α en K sobre la variable x,… …   Wikipedia Español

  • Extension De Galois — En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension de corps finie normale séparable. L ensemble des automorphismes de l extension possède une structure de groupe appelé groupe de Galois. Cette… …   Wikipédia en Français

  • Extension de galois — En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension de corps finie normale séparable. L ensemble des automorphismes de l extension possède une structure de groupe appelé groupe de Galois. Cette… …   Wikipédia en Français

  • Extension galoisienne — Extension de Galois En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension de corps finie normale séparable. L ensemble des automorphismes de l extension possède une structure de groupe appelé groupe de …   Wikipédia en Français

  • normal — normal, ale, aux [ nɔrmal, o ] adj. et n. f. • 1753; verbe normal h. XVe; lat. normalis, de norma « équerre » 1 ♦ Math. Droite normale, ou n. f. la normale à une courbe, à une surface en un point : droite perpendiculaire à la tangente, au plan… …   Encyclopédie Universelle

  • extension — [ek sten′shən] n. [ME extensioun < L extensio < pp. of extendere: see EXTEND] 1. an extending or being extended 2. the amount or degree to which something is or can be extended; range; extent 3. a part that forms a continuation or addition… …   English World dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”