Strain engineering

Strain engineering

Strain engineering refers to a general strategy employed in semiconductor manufacturing to enhance device performance. Performance benefits are achieved by modulating strain in the transistor channel, which enhances electron mobility (or hole mobility) and thereby conductivity through the channel.

Strain Engineering in CMOS Manufacturing

The use of various strain engineering techniques has been reported by many prominent microprocessor manufacturers, including AMD, IBM, and Intel, primarily with regards to sub-130 nm technologies. One key consideration in using strain engineering in CMOS technologies is that PMOS and NMOS respond differently to different types of strain. Specifically, PMOS performance is best served by applying compressive strain to the channel, whereas NMOS receives benefit from tensile strain[1]. Many approaches to strain engineering induce strain locally, allowing both n-channel and p-channel strain to be modulated independently.

One prominent approach involves the use of a strain-inducing capping layer. CVD silicon nitride is a common choice for a strained capping layer, in that the magnitude and type of strain (e.g. tensile vs compressive) may be adjusted by modulating the deposition conditions, especially temperature.[1] Standard lithography patterning techniques can be used to selectively deposit strain-inducing capping layers, to deposit a compressive film over only the PMOS, for example.

Capping layers are key to the Dual Stress Liner (DSL) approach reported by IBM-AMD. In the DSL process, standard patterning and lithography techniques are used to selectively deposit a tensile silicon nitride film over the NMOS and a compressive silicon nitride film over the PMOS.[citation needed]

A second prominent approach involves the use of a silicon-rich solid solution, especially silicon-germanium, to modulate channel strain. One manufacturing method involves epitaxial growth of silicon on top of a relaxed silicon-germanium underlayer. Tensile strain is induced in the silicon as the lattice of the silicon layer is stretched to mimic the larger lattice constant of the underlying silicon-germanium. Conversely, compressive strain could be induced by using a solid solution with a smaller lattice constant, such as silicon-carbon. See, e.g., U.S. Patent No. 7,023,018. Another closely related method[dead link] involves replacing the source and drain region of a MOSFET with silicon-germanium.


See also

Strained silicon

References

  1. ^ Martyniuk, M, Antoszewski, J. Musca, C.A., Dell, J.M., Faraone, L. Smart Mater. Struct. 15 (2006) S29-S38)



Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Strain crystallization — is a phenomenon in which an initially amorphous solid material undergoes a phase transformation due to the application of strain. Strain crystallization occurs in natural rubber, and some other elastomers. The phenomenon has important effects on… …   Wikipedia

  • Engineering strain — Engineering strain. См. Техническое продольное удлинение. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003 г.) …   Словарь металлургических терминов

  • Engineering diffraction — refers to a sub field of neutron scattering which investigates microstructural features that influence the mechanical properties of materials. These include: 1) lattice strain, a measure of distortion in crystals, 2) texture, a measure of grain… …   Wikipedia

  • Strain gauge — Typical foil strain gauge. The gauge is far more sensitive to strain in the vertical direction than in the horizontal direction. The markings outside the active area help to align the gauge during installation. A strain gauge (also strain gage)… …   Wikipedia

  • strain — strain1 strainingly, adv. strainless, adj. strainlessly, adv. /strayn/, v.t. 1. to draw tight or taut, esp. to the utmost tension; stretch to the full: to strain a rope. 2. to exert to the utmost: to strain one s ears to catch a sound. 3. to… …   Universalium

  • Engineering treatment of the finite element method — This is a draft of a new explanation as suggested on . The finite element method (FEM) is a technique for finding approximate solutions to differential equations that is particularly useful in engineering. As of 2005, FEM is the primary analysis… …   Wikipedia

  • Yield (engineering) — The yield strength or yield point of a material is defined in engineering and materials science as the stress at which a material begins to deform plastically. Prior to the yield point the material will deform elastically and will return to its… …   Wikipedia

  • Finite strain theory — Continuum mechanics …   Wikipedia

  • Infinitesimal strain theory — The infinitesimal strain theory, sometimes called small deformation theory, small displacement theory, or small displacement gradient theory, deals with infinitesimal deformations of a continuum body. For an infinitesimal deformation the… …   Wikipedia

  • Stress–strain curve — During testing of a material sample, the stress–strain curve is a graphical representation of the relationship between stress, derived from measuring the load applied on the sample, and strain, derived from measuring the deformation of the sample …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”