Table of thermodynamic equations

Table of thermodynamic equations

:"For more elaboration on these equations see: thermodynamic equations."

The following page is a concise list of common thermodynamic equations and quantities:

Variables

{| class="wikitable" style="width: 25em;"
+ Constants
-!style="width:3em;"| "kB"
Boltzmann constant
-! "R"
Ideal gas constant

Equations

The equations in this article are classified by subject.

First law of thermodynamics

*~ dU=delta q-delta w ~

Note that the symbol delta represents the fact that because "q" and "w" are not state functions,delta q and delta w are inexact differentials.

In some fields such as physical chemistry, positive work is conventionally considered work done on the systemrather than by the system, and the law is expressed as dU=delta q+delta w.

Entropy

*~ S = k_B (ln Omega) ~
*~ dS = frac{delta q}{T} ~, for reversible processes only

Quantum Properties

*~ U = N k_B T^2 left(frac{partial ln Z}{partial T} ight)_V ~
*~ S = frac{U}{T} + N k_B ln Z ~ Distinguishable Particles
*~ S = frac{U}{T} + N k_B ln Z - N k ln N + Nk ~ Indistinguishable Particles

*~ Z_t = frac{(2 pi m k_B T)^frac{3}{2} V}{h^3} ~
*~ Z_v = frac{1}{1 - e^frac{-h omega}{2 pi k_B T ~
*~ Z_r = frac{2 I k_B T}{sigma (frac{h}{2 pi})^2} ~
*~ sigma = 1 ~ heteronuclear
*~ sigma = 2 ~ homonuclear

N is Number of Particles, Z is the Partition Function, h is Planck's Constant, I is Moment of Inertia, Zt is Ztranslation, Zv is Zvibration, Zr is Zrotation


=Quasi-static and reversible process=

*~ dQ=C_p dT+l_v d_v =dU+PdV=TdS~

Heat capacity at constant pressure

*~ C_p=left ( {partial Uover partial T} ight )_p + p left ( {partial Vover partial T} ight )_p = left ( {partial Hover partial T} ight )_p= T left ( {partial Sover partial T} ight )_p ~

Heat capacity at constant volume

*~ C_V=left ( {partial Uover partial T} ight )_V= T left ( {partial Sover partial T} ight )_V ~

Fundamental Equation of Thermodynamics

*~ U = TS - pV + mu N

Enthalpy

*~ H equiv U+pV = mu N + TS~

Helmholtz free energy

*~ A equiv U-TS = mu N - pV ~

Gibbs free energy

*~ G equiv U+pV-TS = H-TS = mu N ~

Maxwell relations

* ~ left ( {partial Tover partial V} ight )_{S,N} = -left ( {partial pover partial S} ight )_{V,N} ~
* ~ left ( {partial Tover partial p} ight )_{S,N} = left ( {partial Vover partial S} ight )_{p,N} ~
* ~ left ( {partial Tover partial V} ight )_{p,N} = -left ( {partial pover partial S} ight )_{T,N} ~
* ~ left ( {partial Tover partial p} ight )_{V,N} = left ( {partial Vover partial S} ight )_{T,N} ~

Incremental processes

*~ dU = T,dS-p,dV + mu,dN ~
*~ dA = -S,dT-p,dV + mu,dN ~
*~ dG = -S,dT+V,dp + mu,dN = mu,dN +N,dmu ~
*~ dH = T,dS+V,dp + mu,dN ~

Compressibility at constant temperature

*~ K_T = -{ 1over V } left ( {partial Vover partial p} ight )_{T,N} ~

More relations

* ~ left ( {partial Sover partial U} ight )_{V,N} = { 1over T } ~
* ~ left ( {partial Sover partial V} ight )_{N,U} = { pover T } ~
* ~ left ( {partial Sover partial N} ight )_{V,U} = - { mu over T } ~
* ~ left ( {partial Tover partial S} ight )_V = { T over C_V } ~
* ~ left ( {partial Tover partial S} ight )_p = { T over C_p } ~
* ~ -left ( {partial pover partial V} ight )_T = { 1 over {VK_T} } ~

Equation Table for an Ideal Gas

Other useful identities

*Delta U = q_{by} + w_{on} = q_{by} - int p_{ext}dV = q_{by} - p_{ext}Delta V

*H = U + pV ,!
*A = U - TS ,!

*G = H - TS = sum_{i} mu_{i} N_{i} ,!
*dUleft(S,V,{n_{i ight) = TdS - pdV + sum_{i} mu_{i} dN_i
*dHleft(S,p,n_{i} ight) = TdS + Vdp + sum_{i} mu_{i} dN_{i}
*dAleft(T,V,n_{i} ight) = -SdT - pdV + sum_{i} mu_{i} dN_{i}
*dGleft(T,p,n_{i} ight) = -SdT + Vdp + sum_{i} mu_{i} dN_{i}

*mu_{JT} = left(frac{partial T}{partial p} ight)_H
*kappa_{T} = -frac{1}{V}left(frac{partial V}{partial p} ight)_T
*alpha_{p} = frac{1}{V}left(frac{partial V}{partial T} ight)_p

*left(frac{partial H}{partial p} ight)_T = V - Tleft(frac{partial V}{partial T} ight)_p
*left(frac{partial U}{partial V} ight)_T = Tleft(frac{partial p}{partial T} ight)_V - p
*H = -T^2left(frac{partial left(G/T ight)}{partial T} ight)_p
*U = -T^2left(frac{partial left(A/T ight)}{partial T} ight)_V

Proof #1

An example using the above methods is:

:left(frac{partial T}{partial p} ight)_H = -frac{1}{C_p} left(frac{partial H}{partial p} ight)_T

:left(frac{partial T}{partial p} ight)_Hleft(frac{partial p}{partial H} ight)_Tleft(frac{partial H}{partial T} ight)_p= -1

:left(frac{partial T}{partial p} ight)_H = -left(frac{partial H}{partial p} ight)_T left(frac{partial T}{partial H} ight)_P

::::= frac{-1}{left(frac{partial H}{partial T} ight)_p} left(frac{partial H}{partial p} ight)_T ; C_p = left(frac{partial H}{partial T} ight)_p

:Rightarrow left(frac{partial T}{partial p} ight)_H= -frac{1}{C_p} left(frac{partial H}{partial p} ight)_T

Proof #2

Another example:

:C_V = Tleft(frac{partial S}{partial T} ight)_V

:U = q + w ,!

:dU = dq_{rev} + w_{rev} ; dS = frac{dq_{rev{T}, w_{rev} = -pdV ,!

::= TdS-pdV ,!

:left(frac{partial U}{partial T} ight)_V= Tleft(frac{partial S}{partial T} ight)_V- pleft(frac{partial V}{partial T} ight)_V ; C_V = left(frac{partial U}{partial T} ight)_V

:Rightarrow C_V = Tleft(frac{partial S}{partial T} ight)_V

References

* Atkins, Peter and de Paula, Julio "Physical Chemistry", 7th edition, W.H. Freeman and Company, 2002 [ISBN 0-7167-3539-3] .
** Chapters 1 - 10, "Part 1: Equilibrium".
* Bridgman, P.W., "Phys. Rev.", 3, 273 (1914).
*Landsberg, Peter T. Thermodynamics and Statistical Mechanics. New York: Dover Publications, Inc., 1990. "(reprinted from Oxford University Press, 1978)".
* Lewis, G.N., and Randall, M., "Thermodynamics", 2nd Edition, McGraw-Hill Book Company, New York, 1961.
* Reichl, L.E., "A Modern Course in Statistical Physics", 2nd edition, New York: John Wiley & Sons, 1998.
*Schroeder, Daniel V. Thermal Physics. San Francisco: Addison Wesley Longman, 2000 [ISBN 0-201-38027-7] .
*Silbey, Robert J., et al. Physical Chemistry. 4th ed. New Jersey: Wiley, 2004.
*Callen, Herbert B. (1985). "Thermodynamics and an Introduction to Themostatistics", 2nd Ed., New York: John Wiley & Sons.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Thermodynamic equations — For a quick reference table of these equations, see: Table of thermodynamic equations In thermodynamics, there are a large number of equations relating the various thermodynamic quantities. In chemical thermodynamics, which is a sub branch of… …   Wikipedia

  • Bridgman's thermodynamic equations — In thermodynamics, Bridgman s thermodynamic equations are a basic set of thermodynamic equations, derived using a method of generating a large number of thermodynamic identities involving a number of thermodynamic quantities. The equations are… …   Wikipedia

  • Thermodynamic system — A thermodynamic system is a precisely defined macroscopic region of the universe, often called a physical system, that is studied using the principles of thermodynamics. All space in the universe outside the thermodynamic system is known as the… …   Wikipedia

  • Thermodynamic cycle — Thermodynamics …   Wikipedia

  • Thermodynamic databases for pure substances — Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are… …   Wikipedia

  • Thermodynamic temperature — is the absolute measure of temperature and is one of the principal parameters of thermodynamics. Thermodynamic temperature is an “absolute” scale because it is the measure of the fundamental property underlying temperature: its null or zero point …   Wikipedia

  • Fundamental thermodynamic relation — Thermodynamics …   Wikipedia

  • Thermodynamic potential — A thermodynamic potential is a scalar potential function used to represent the thermodynamic state of a system. One main thermodynamic potential which has a physical interpretation is the internal energy, U. It is the energy of configuration of a …   Wikipedia

  • Maxwell's equations — For thermodynamic relations, see Maxwell relations. Electromagnetism …   Wikipedia

  • Ideal gas — Thermodynamics …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”