Mersenne conjectures

Mersenne conjectures

In mathematics, the Mersenne conjectures concern the characterization of prime numbers of a form called Mersenne primes, meaning prime numbers that are a power of two minus one.

Contents

Original Mersenne conjecture

The original, called Mersenne's conjecture, was a statement by Marin Mersenne in his Cogitata Physica-Mathematica (1644; see e.g. Dickson 1919) that the numbers 2n − 1 were prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127 and 257, and were composite for all other positive integers n < 257. Due to the size of these numbers, Mersenne did not and could not test all of them, nor could his peers in the 17th century. It was eventually determined, after three centuries and the availability of new techniques such as the Lucas–Lehmer test, that Mersenne's conjecture contained five errors, namely two are composite (n = 67, 257) and three omitted primes (n = 61, 89, 107). The correct list is: n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 and 127.

While Mersenne's original conjecture is false, it has led to the New Mersenne conjecture and the Lenstra–Pomerance–Wagstaff conjecture.

New Mersenne conjecture

The New Mersenne conjecture or Bateman, Selfridge and Wagstaff conjecture (Bateman et al. 1989) states that for any odd natural number p, if any two of the following conditions hold, then so does the third:

  1. p = 2k ± 1 or p = 4k ± 3 for some natural number k.
  2. 2p − 1 is prime (a Mersenne prime).
  3. (2p + 1) / 3 is prime (a Wagstaff prime).

If p is an odd composite number, then 2p − 1 and (2p + 1)/3 are both composite. Therefore it is only necessary to test primes to verify the truth of the conjecture.

Currently, the known numbers for which all three conditions hold are: 3, 5, 7, 13, 17, 19, 31, 61, 127.

The New Mersenne conjecture can be thought of as an attempt to salvage the centuries-old Mersenne's conjecture, which is false. However, according to Robert D. Silverman, John Selfridge agreed that the New Mersenne conjecture is "obviously true" as it was chosen to fit the known data and counter-examples beyond those cases are exceedingly unlikely. It may be regarded more as a curious observation than as an open question in need of proving.

Renaud Lifchitz has shown that the NMC is true for all integers less than or equal to 16,777,212 by systematically testing all odd primes for which it is already known that one of the conditions holds. His website documents the verification of results up to this number. Another, currently more up-to-date status page on the NMC is The New Mersenne Prime conjecture.

Lenstra–Pomerance–Wagstaff conjecture

Lenstra, Pomerance, and Wagstaff have conjectured that there is an infinite number of Mersenne primes, and, more precisely, that the number of Mersenne primes less than x is asymptotically approximated by

e^\gamma\cdot\log \log(x)/\log(2),[1]

where γ is the Euler-Mascheroni constant, and e^\gamma = 1.781072417990197\dots. In other words, the number of Mersenne primes with exponent p less than y is asymptotically

e^\gamma\cdot\log(y)/\log(2).[1]

This means that there should on average be about e^\gamma\cdot\log(10)/\log(2) ≈ 5.92 primes p of a given number of decimal digits such that Mp is prime.

See also

  • Lucas–Lehmer primality test
  • Lucas primality test
  • Catalan's Mersenne conjecture

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Mersenne prime — Named after Marin Mersenne Publication year 1536[1] Author of publication Regius, H. Number of known terms 47 Conjectured number of terms Infinite …   Wikipedia

  • Mersenne-Primzahl — Poststempel mit der 23. Mersenne Primzahl, gefunden 1963 an der UIUC von Donald B. Gillies. Eine Mersenne Zahl ist eine Zahl der Form 2n − 1. Im Speziellen bezeichnet man mit Mn = 2n − 1 die n te Mersenne Zahl. Die ersten acht Mersenne Zahlen Mn… …   Deutsch Wikipedia

  • Nouvelle conjecture de Mersenne — En mathématiques, la nouvelle conjecture de Mersenne (ou conjecture de Bateman, Selfridge et Wagstaff) est une conjecture concernant certains nombres premiers ; elle prévoit que pour tout nombre naturel impair p, si deux des conditions… …   Wikipédia en Français

  • List of conjectures — This is an incomplete list of mathematical conjectures. They are divided into four sections, according to their status in 2007. See also: * Erdős conjecture, which lists conjectures of Paul Erdős and his collaborators * Unsolved problems in… …   Wikipedia

  • Liste de conjectures mathématiques — Ce qui suit est une liste de conjectures mathématiques, non exhaustive. Elles sont divisées en quatre sections, en accord avec leur état en 2011. Voir aussi : Conjecture d Erdős (en), qui liste des conjectures de Paul Erdős et de ses… …   Wikipédia en Français

  • Liste Des Conjectures Mathématiques — Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős, qui liste les conjectures de Paul… …   Wikipédia en Français

  • Liste des conjectures — mathématiques Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős, qui liste les… …   Wikipédia en Français

  • Liste des conjectures mathematiques — Liste des conjectures mathématiques Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős,… …   Wikipédia en Français

  • Liste des conjectures mathématiques — Ce qui suit est une liste de conjectures mathématiques, contenues dans les pages de Wikipedia. Elles sont divisées en quatre sections, en accord avec leur état en 2006. Voir aussi : La conjecture d Erdős, qui liste les conjectures de Paul… …   Wikipédia en Français

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”