- Trigonometric interpolation
In
mathematics , trigonometric interpolation isinterpolation withtrigonometric polynomial s. Interpolation is the process of finding a function which goes through some given data points. For trigonometric interpolation, this function has to be a trigonometric polynomial, that is, a sum of sines and cosines of given periods. This form is especially suited for interpolation ofperiodic function s.An important special case is when the given data points are equally spaced, in which case the solution is given by the
discrete Fourier transform .Formulation of the interpolation problem
A trigonometric polynomial of degree "n" has the form:This expression contains 2"n" + 1 coefficients, "a"0, "a"1, … "a""n", "b"1, …, "b""n", and we wish to compute those coefficients so that the function passes through "N" points::Since the trigonometric polynomial is periodic with period 2π, it makes sense to assume that:(Note that we do "not" in general require these points to be equally spaced.) The interpolation problem is now to find coefficients such that the trigonometric polynomial "p" satisfies the interpolation conditions.
olution of the problem
Under the above conditions, there exists a solution to the problem for "any" given set of data points {"x""k", "p"("x""k")} as long as the number of data points is not larger than the number of coefficients in the polynomial, i.e., "N" ≤ 2"n"+1 (a solution may or may not exist if "N">2"n"+1 depending upon the particular set of data points). Moreover, the interpolating polynomial is unique if and only if the number of adjustable coefficients is equal to the number of data points, i.e., "N"=2"n"+1. In the remainder of this article, we will assume this condition to hold true.
The solution can be written in a form similar to the Lagrange formula for polynomial interpolation::This can be shown to be a trigonometric polynomial by employing the multiple-angle formula and other identities for sin ½("x" − "x""m").
Formulation in the complex plane
The problem becomes more natural if we formulate it in the
complex plane . We can rewrite the formula for a trigonometric polynomial as:where "i" is theimaginary unit . If we set "z" = "e""ix", then this becomes:This reduces the problem of trigonometric interpolation to that of polynomial interpolation on theunit circle . Existence and uniqueness for trigonometric interpolation now follows immediately from the corresponding results for polynomial interpolation.For more information on formulation of trigonometric interpolating polynomials in the complex plane see [http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea.pdf , p128 Interpolation using Fourier Polynomials] .
Equidistant nodes and the discrete Fourier transform
The special case in which the points "x""k" are equally spaced is especially important. In this case, we have:The transformation that maps the data points "y""k" to the coefficients "a""m", "b""m" is known as the
discrete Fourier transform (DFT) of order .(Because of the way the problem was formulated above, we have restricted ourselves to odd numbers of points. This is not strictly necessary; for even numbers of points, one includes another cosine term corresponding to the
Nyquist frequency .)The case of the cosine-only interpolation for equally spaced points, corresponding to a trigonometric interpolation when the points have even symmetry, was treated by
Alexis Clairaut in1754 . In this case the solution is equivalent to adiscrete cosine transform . The sine-only expansion for equally spaced points, corresponding to odd symmetry, was solved byJoseph Louis Lagrange in1762 , for which the solution is adiscrete sine transform . The full cosine and sine interpolating polynomial, which gives rise to the DFT, was solved byCarl Friedrich Gauss in unpublished work around1805 , at which point he also derived a fast Fourier transform algorithm to evaluate it rapidly. Clairaut, Lagrange, and Gauss were all concerned with studying the problem of inferring theorbit ofplanet s,asteroid s, etc., from a finite set of observation points; since the orbits are periodic, a trigonometric interpolation was a natural choice. See also Heideman "et al." (1984).References
* Kendall E. Atkinson, "An Introduction to Numerical Analysis" (2nd edition), Section 3.8. John Wiley & Sons, New York, 1988. ISBN 0-471-50023-2.
* M. T. Heideman, D. H. Johnson, and C. S. Burrus, "Gauss and the history of the fast Fourier transform," "IEEE ASSP Magazine" 1 (4), 14–21 (1984).
Wikimedia Foundation. 2010.