Melnikov distance

Melnikov distance

One of the main tools to determine the existence of (or non-existence of) chaos in a perturbed hamiltonian system is the Melnikov theory. In this theory, the distance between the stable and unstable manifolds of the perturbed system is calculated up to the first order term. Consider a smooth dynamical system \ddot x = f(x) + \epsilon g(t), with  \epsilon \ge 0 and g(t) periodic with period T. Suppose for \epsilon = 0 the system has a hyperbolic fixed point x0 and a homoclinic orbit ϕ(t) corresponding to this fixed point. Then for sufficiently small \epsilon \ne 0 there exists a T-periodic hyperbolic solution. The stable and unstable manifolds of this periodic solution intersect transversally. The distance between these manifolds measured along a direction that is perpendicular to the unperturbed homoclinc orbit ϕ(t) is called the Melnikov distance. If d(t) denotes this distance, then d(t) = \epsilon (M(t) + O(\epsilon)). The function M(t) is called the Melnikov function.


References

Guckenheimer J and Holmes P 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Berlin: Springer)


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Melnikov — (Russian: Мельников) is a surname of Russian origin. Like many surnames, it derives from an occupation, the root мельник (melnik) meaning miller, one who mills grain. It may refer to: Alexander Melnikov (b. 1973), pianist Avraam Melnikov… …   Wikipedia

  • MELNIKOV, Konstantin Stepanovich — (1890 1974)    Konstantin Melnikov was the leading architect during the New Economic Policy of Vladimir Lenin after the Bolshevik Revolution in Russia. Melnikov was born into an impoverished family, but his father encouraged his artistic… …   Historical Dictionary of Architecture

  • Sergey Melnikov — (born 8 November 1968) is a retired Russian middle distance runner who specialized in the 1500 metres.He finished tenth at the 1991 IAAF World Indoor Championships and won a silver medal at the 1992 European Indoor Championships. [… …   Wikipedia

  • List of mathematics articles (M) — NOTOC M M estimator M group M matrix M separation M set M. C. Escher s legacy M. Riesz extension theorem M/M/1 model Maass wave form Mac Lane s planarity criterion Macaulay brackets Macbeath surface MacCormack method Macdonald polynomial Machin… …   Wikipedia

  • SYSTÈMES DYNAMIQUES DIFFÉRENTIABLES — Sans doute née avec le mémoire que Poincaré écrivit en 1881 «sur les courbes définies par des équations différentielles», où l’étude quantitative (analytique) locale des équations différentielles dans le champ complexe est remplacée par leur… …   Encyclopédie Universelle

  • Union soviétique aux Jeux olympiques d'hiver de 1964 — Union soviétique aux Jeux olympiques Union soviétique aux Jeux olympiques d hiver de 1964 …   Wikipédia en Français

  • List of Russian people — The Millennium of Russia monument in Veliky Novgorod, featuring the statues and reliefs of the most celebrated people in the first 1000 years of Russian history …   Wikipedia

  • Moscow — This article is about the capital of Russia. For other uses, see Moscow (disambiguation). Moscow Москва (Russian)   Federal city   …   Wikipedia

  • Post-chrétiens — Postmodernisme Pour les articles homonymes, voir Postmodernisme (homonymie). Le postmodernisme est un paradigme esthétique, inventé au tournant des années 70 par le critique littéraire Ihab H. Hassan et redéfini par le critique d architectur …   Wikipédia en Français

  • Post-moderne — Postmodernisme Pour les articles homonymes, voir Postmodernisme (homonymie). Le postmodernisme est un paradigme esthétique, inventé au tournant des années 70 par le critique littéraire Ihab H. Hassan et redéfini par le critique d architectur …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”