Dvoretzky–Kiefer–Wolfowitz inequality

Dvoretzky–Kiefer–Wolfowitz inequality

In the theory of probability and statistics, the Dvoretzky–Kiefer–Wolfowitz inequality predicts how close an empirically determined distribution function will be to the distribution function from which the empirical samples are drawn. It is named after Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz, who in 1956 proved[1] the inequality with a unspecified multiplicative constant C in front of the exponent on the right-hand side. In 1990, Pascal Massart proved the inequality with the sharp constant C = 1, [2] confirming a conjecture due to Birnbaum and McCarty.[3]

The DKW inequality

Given a natural number n, let X1, X2, …, Xn be real-valued independent and identically distributed random variables with distribution function F(·). Let Fn denote the associated empirical distribution function defined by


    F_n(x) = \frac1n \sum_{i=1}^n \mathbf{1}_{\{X_i\leq x\}},\qquad x\in\mathbb{R}.

The Dvoretzky–Kiefer–Wolfowitz inequality bounds the probability that the random function Fn differs from F by more than a given constant ε > 0 anywhere on the real line. More precisely, there is the one-sided estimate


    \Pr\Bigl(\sup_{x\in\mathbb R} \bigl(F_n(x) - F(x)\bigr) > \varepsilon \Bigr) \le e^{-2n\varepsilon^2}\qquad \text{for every }\varepsilon\geq\sqrt{\tfrac{1}{2n}\ln2},

which also implies a two-sided estimate


    \Pr\Bigl(\sup_{x\in\mathbb R} |F_n(x) - F(x)| > \varepsilon \Bigr) \le 2e^{-2n\varepsilon^2}\qquad \text{for every }\varepsilon>0.

This strengthens the Glivenko–Cantelli theorem by quantifying the rate of convergence as n tends to infinity. It also estimates the tail probability of the Kolmogorov–Smirnov statistic. The inequalities above follow from the case where F corresponds to be the uniform distribution on [0,1] in view of the fact[4] that Fn has the same distributions as Gn(F) where Gn is the empirical distribution of U1, U2, …, Un where these are independendent and Uniform(0,1), and noting that


    \sup_{x\in\mathbb R} |F_n(x) - F(x)|\stackrel{d}{=} \sup_{x \in \mathbb R} | G_n (F(x)) - F(x) | \le \sup_{0 \le t \le 1} | G_n (t) -t | ,

with equality if and only if F is continuous.

References

  1. ^ Dvoretzky, A.; Kiefer, J.; Wolfowitz, J. (1956), "Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator", Annals of Mathematical Statistics 27 (3): 642–669, doi:10.1214/aoms/1177728174, MR0083864, http://projecteuclid.org/euclid.aoms/1177728174 
  2. ^ Massart, P. (1990), "The tight constant in the Dvoretzky–Kiefer–Wolfowitz inequality", The Annals of Probability 18 (3): 1269–1283, doi:10.1214/aop/1176990746, MR1062069, http://projecteuclid.org/euclid.aop/1176990746 
  3. ^ Birnbaum, Z. W.; McCarty, R. C. (1958). "A distribution-free upper confidence bound for Pr{Y<X}, based on independent samples of X and Y". Ann. Math. Statist. 29: 558–562. doi:10.1214/aoms/1177706631. MR0093874. Zbl 0087.34002. http://projecteuclid.org/euclid.aoms/1177706631. 
  4. ^ Shorack, G.R.; Wellner, J.A. (1986), Empirical Processes with Applications to Statistics, Wiley, ISBN 0-471-86725-X 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Wolfowitz — is a surname that may refer to:People* Jacob Wolfowitz, (1910 1981) American statistician and information theorist. Father of Paul Wolfowitz. * Clare Selgin Wolfowitz, an expert on Indonesian anthropology. * Paul Wolfowitz, (born 1943) American… …   Wikipedia

  • Aryeh Dvoretzky — Pour les articles homonymes, voir Dvoretzky. Aryeh Dvoretzky 1962 Aryeh (Arie) Dvoretzky (hébreu : אריה דבורצקי, ru …   Wikipédia en Français

  • Jack Kiefer (mathematician) — Jack Carl Kiefer (January 25, 1924 – August 10, 1981) was an American statistician. Biography Jack Kiefer was born on January 25, 1924, in Cincinnati, Ohio, to Carl Jack Kiefer and Marguerite K. Rosenau. He began his undergraduate studies at the… …   Wikipedia

  • Aryeh Dvoretzky — Aryeh Dvoretzky, 1962 Aryeh (Arie) Dvoretzky (Hebrew: אריה דבורצקי‎, Russian: Арье Дворецкий; May 3, 1916 – May 8, 2008) was a Russian born Israeli mathematician, the winner of the 1973 Israel Prize in Mathematics …   Wikipedia

  • Fonction de répartition empirique — En Statistiques, une fonction de répartition empirique est une fonction de répartition qui attribue la probabilité 1/n à chacun des n nombres dans un échantillon. Soit un échantillon de variables iid à valeurs dans avec pour fonction de… …   Wikipédia en Français

  • List of inequalities — This page lists Wikipedia articles about named mathematical inequalities. Inequalities in pure mathematics =Analysis= * Askey–Gasper inequality * Bernoulli s inequality * Bernstein s inequality (mathematical analysis) * Bessel s inequality *… …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • Empirical distribution function — In statistics, an empirical distribution function is a cumulative probability distribution function that concentrates probability 1/ n at each of the n numbers in a sample.Let X 1,ldots,X n be iid random variables in mathbb{R} with the cdf F ( x… …   Wikipedia

  • Glivenko-Cantelli theorem — In the theory of probability, the Glivenko Cantelli theorem determines the asymptotic behaviour of the empirical distribution function as the number of iid observations grows. This uniform convergence of more general empirical measures becomes an …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”