Igusa zeta-function

Igusa zeta-function

In mathematics, an Igusa zeta function is a type of generating function, counting the number of solutions of an equation, "modulo" "p", "p"2, "p"3, and so on.

Definition

For a prime number p let K be a p-adic field, i.e. [K: mathbb{Q}_p] , R the valuation ring and P the maximal ideal. For z in K operatorname{ord}(z) denotes the valuation of z, mid z mid = q^{-operatorname{ord}(z)}, and ac(z)=z pi^{-operatorname{ord}(z)} for a uniformizing parameter pi of R.

Furthermore let phi : K^n mapsto mathbb{C} be a Schwartz-Bruhat function, i.e. a locally constant function with compact support and let chi be a character of K*.

In this situation one associates to a non-constant polynomial f(x_1, ldots, x_n) in K [x_1,ldots,x_n] the Igusa zeta function

: Z_phi(s,chi) = int_{K^n} phi(x_1,ldots,x_n) chi(ac(f(x_1,ldots,x_n))) |f(x_1,ldots,x_n)|^s , dx

where s in mathbb{C}, operatorname{Re}(s)>0, and dx is Haar measure so normalized that R^n has measure 1.

Igusa's theorem

Junichi Igusa showed that Z_phi (s,chi) is a rational function in t=q^{-s}. The proof uses Heisuke Hironaka's theorem about the resolution of singularities. Little is known, however, about explicit formulas. (There are some results about Igusa zeta functions of Fermat varieties.)

Congruences modulo powers of P

Henceforth we take phi to be the characteristic function of R^n and chi to be the trivial character. Let N_i denote the number of solutions of the congruence

:f(x_1,ldots,x_n) equiv 0 mod P^i.

Then the Igusa zeta function

: Z(t)= int_{R^n} |f(x_1,ldots,x_n)|^s , dx

is closely related to the Poincaré series

: P(t)= sum_{i=0}^{infty} q^{-in}N_i t^i

by

: P(t)= frac{1-t Z(t)}{1-t}.

References

*Information for this article was taken from [http://wis.kuleuven.be/algebra/denef.html J. Denef, Report on Igusa's Local Zeta Function, Séminaire Bourbaki 43 (1990-1991), exp. 741; Astérisque 201-202-203 (1991), 359-386]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Zeta function — A zeta function is a function which is composed of an infinite sum of powers, that is, which may be written as a Dirichlet series::zeta(s) = sum {k=1}^{infty}f(k)^s Examples There are a number of mathematical functions with the name zeta function …   Wikipedia

  • Fonction zêta — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. La fonction zêta (d après la lettre grecque zêta, ou ζ) est le nom de nombreuses fonctions en mathématiques. La plus connue est la fonction zêta de… …   Wikipédia en Français

  • Función zeta de Igusa — En matemáticas, una función zeta de Igusa es un tipo de función generadora, que cuenta el número de soluciones de una ecuación, módulo p, p2, p3, y así sucesivamente Contenido 1 Definición 2 Teorema de Igusa 3 Con …   Wikipedia Español

  • Glossary of arithmetic and Diophantine geometry — This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of… …   Wikipedia

  • Дзета-функции — Эта страница информационный список. См. также основную статью: Дзета функция Римана В математике дзета функция обычно это функция родственная или аналогичная дзета функции Римана …   Википедия

  • List of mathematics articles (I) — NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… …   Wikipedia

  • Séminaire Nicolas Bourbaki (1950–1959) — Continuation of the Séminaire Nicolas Bourbaki programme, for the 1950s. 1950/51 series *33 Armand Borel, Sous groupes compacts maximaux des groupes de Lie, d après Cartan, Iwasawa et Mostow (maximal compact subgroups) *34 Henri Cartan, Espaces… …   Wikipedia

  • Gundam — This article is about the anime series. For the mecha themselves, see Mobile weapons. RX 78 2 Gundam. Art by Hajime Katoki. The Gundam Series (ガンダムシリーズ, Gandamu Shirīzu …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”