65537 (number)

65537 (number)

Number
number= 65537
range = 10000 - 100000
cardinal = sixty-five thousand five hundred thirty-seven
ordinal = th
numeral =
factorization = "prime"
prime =
divisor = 2
roman =
unicode =
greek prefix =
latin prefix =
bin = 10000000000000001
oct =
duo =
hex = 10001

65537 is the integer after 65536 and before 65538.

In mathematics

65537 is a Fermat number, being 2^{16} + 1. It is also a Fermat prime, a Pierpont prime, and it is possible to construct with compass and straightedge a regular polygon with this many sides. Such a construction was devised by J. Hermes in the 19th century. See constructible polygon. 65537 is commonly used as a public exponent in the RSA cryptosytem. This value is seen as a wise compromise, since it is famously known to be prime, large enough to avoid the attacks to which small exponents make RSA vulnerable, and can be computed extremely quickly on binary computers, which often support shift and increment instructions. Exponents in any base can be represented as shifts to the left in a base positional notation system, and so in binary the result is doubling - 65537 is the result of incrementing shifting 1 left by 16 places, and 16 is itself obtainable without loading a value into the register (which can be expensive when register contents approaches 64 bit), but zero and one can be derived more 'cheaply'.


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • 60000 (number) — Number number = 60000 range = 10000 100000 cardinal = 60000 ordinal = th ordinal text = sixty thousandth factorization = 2^5 cdot 3 cdot 5^4 bin = 1110101001100000 oct = 165140 hex = EA6060,000 (sixty thousand) is the number that comes after… …   Wikipedia

  • 65536 (number) — Number number= 65536 range = 10000 100000 cardinal = sixty five thousand five hundred thirty six ordinal = th numeral = factorization = 2^{16} prime = divisor = 17 roman = unicode = greek prefix = latin prefix = bin = 10000000000000000 oct = duo …   Wikipedia

  • Park–Miller random number generator — The Park–Miller random number generator (or the Lehmer random number generator) is a variant of linear congruential generator that operates in multiplicative group of integers modulo n. A general formula of a random generator (RNG) of this type… …   Wikipedia

  • Jacobsthal number — In mathematics, the Jacobsthal numbers are an integer sequence named after the German mathematician Ernst Jacobsthal. Like the related Fibonacci numbers, they are a specific type of Lucas sequence Jacobsthal numbers are the type for which P = 1,… …   Wikipedia

  • List of mathematics articles (0-9) — NOTOC 0 −0 (number) −1 (number) −40 (number) Σ compact space Ω consistent theory Γ convergence Δ hyperbolic space Ω logic Ε net Ε quadratic form Μ recursive function yllion 0 (number) Ε₀ 0,1 simple lattice 0.999... ( 2, 3, 7) pretzel knot (2,3,7) …   Wikipedia

  • Constructible polygon — Construction of a regular pentagon In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular… …   Wikipedia

  • RSA — In cryptography, RSA is an algorithm for public key cryptography. It is the first algorithm known to be suitable for signing as well as encryption, and one of the first great advances in public key cryptography. RSA is widely used in electronic… …   Wikipedia

  • Криптосистема Ривеста-Шамира-Адельмана — RSA (буквенная аббревиатура от фамилий Rivest, Shamir и Adleman)  криптографический алгоритм с открытым ключом. RSA стал первым алгоритмом такого типа, пригодным и для шифрования, и для цифровой подписи. Алгоритм используется в большом числе… …   Википедия

  • Криптосистема Ривеста — Шамира — Адельмана — RSA (буквенная аббревиатура от фамилий Rivest, Shamir и Adleman)  криптографический алгоритм с открытым ключом. RSA стал первым алгоритмом такого типа, пригодным и для шифрования, и для цифровой подписи. Алгоритм используется в большом числе… …   Википедия

  • List of prime numbers — This is an incomplete list, which may never be able to satisfy particular standards for completeness. You can help by expanding it with reliably sourced entries. By Euclid s theorem, there are an infinite number of prime numbers. Subsets of the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”