- Hypercone
of a spherical cone's
generatrices (red),parallels (green) and hypermeridians (blue).Due to conformal property of Stereographic Projection,the curves intersect each other orthogonally (in the yellow points) as in 4D.All curves are circles or straight lines. The generatrices and parallels generatesa 3D dual cone. The hypermeridians generates a set of concentric spheres. ]In
geometry , a hypercone (or spherical cone) is the figure in the 4-dimensionalEuclidean space represented by the equation:
It is a
quadric surface, and is one of the possible 3-manifold s which are 4-dimensional equivalents of theconical surface in 3 dimensions. It is also named spherical cone because its intersections withhyperplane s perpendicular to the "w"-axis aresphere s. A four-dimensional right spherical hypercone can be thought of as a sphere which expands with time, starting its expansion from a single point source, such that the center of the expanding sphere remains fixed. An oblique spherical hypercone would be a sphere which expands with time, again starting its expansion from a point source, but such that the center of the expanding sphere moves with a uniform velocity.Parametric form
A right spherical hypercone can be described by the function:with vertex at the origin and expansion speed "s".
An oblique spherical hypercone could then be described by the function:where is the 3-velocity of the center of the expanding sphere.An example of such a cone would be an expanding
sound wave as seen from the point of view of a moving reference frame: e.g. the sound wave of ajet aircraft as seen from the jet's own reference frame.Note that the 3D-surfaces above enclose 4D-hypervolumes, which are the 4-cones proper.
Geometrical interpretation
The spherical cone consists of two unbounded "nappes", which meet at the origin and are the analogues of the nappes of the 3-dimensional conical surface. The "upper nappe" corresponds with the half with positive "w"-coordinates, and the "lower nappe" corresponds with the half with negative "w"-coordinates.
If it is restricted between the hyperplanes and for some non-zero "r", then it may be closed by a 3-ball of radius "r", centered at (0,0,0,"r"), so that it bounds a finite 4-dimensional volume. This volume is given by the formula , and is the 4-dimensional equivalent of the solid cone. The ball may be thought of as the 'lid' at the base of the 4-dimensional cone's nappe, and the origin becomes its 'apex'.
This shape may be projected into 3-dimensional space in various ways. If projected onto the "XYZ"
hyperplane , its image is a ball. If projected onto the "XYW", "XZW", or "YZW" hyperplanes, its image is a solid cone. If projected onto an oblique hyperplane, its image is either anellipsoid or a solid cone with an ellipsoidal base (resembling anice cream cone ). These images are the analogues of the possible images of the solid cone projected to 2 dimensions.Construction
The (half) hypercone may be constructed in a manner analogous to the construction of a 3D cone. A 3D cone may be thought of as the result of stacking progressively smaller discs on top of each other until they taper to a point. Alternatively, a 3D cone may be regarded as the volume swept out by an upright
isosceles triangle as it rotates about its base.A 4D hypercone may be constructed analogously: by stacking progressively smaller balls on top of each other in the 4th direction until they taper to a point, or taking the hypervolume swept out by a tetrahedron standing upright in the 4th direction as it rotates freely about its base in the 3D hyperplane it rests on.
Temporal interpretation
If the "w"-coordinate of the equation of the spherical cone is interpreted as time, then it is the shape of the
light cone inspecial relativity . In this case, the equation is usually written as::
The upper nappe is then the "future light cone" and the lower nappe is the "past light cone".
ee also
*
3-sphere
*hyperplane
*hypersurface
*manifold
*light cone External links
* [http://forums.philosophyforums.com/thread/16545/ Philosophy Forums: 4-D objects]
Wikimedia Foundation. 2010.