- Fuzzy subalgebra
Fuzzy subalgebras theory is a chapter of fuzzy set theory. It is obtained from an interpretation in a multi-valued logic of axioms usually expressing the notion of subalgebra of a given algebraic structure. Indeed, consider a first order language for algebraic structures with a monadic predicate symbol S. Then a "fuzzy subalgebra", is a fuzzy model of a theory containing, for any "n"-ary operation name h, the axiom
A1 ∀x1..., ∀xn(S(x1)∧.....∧ S(xn) → S(h(x1,...,xn))
and, for any constant c, the axiom
A2 S(c).
A1 expresses the closure of S with respect to the operation h, A2 expresses the fact that c is an element in S. As an example, assume that the valuation structure is defined in [0,1] and denote by the operation in [0,1] used to interpret the conjunction. Then it is easy to see that a fuzzy subalgebra of an algebraic structure whose domain is D is defined by a fuzzy subset s : D → [0,1] of D such that, for every d1,...,dn in D, if h is the interpretation of the n-ary operation symbol h, then
i) s(d1)s(dn)≤ s(h(d1,...,dn))
Moreover, if c is the interpretation of a constant c
ii) s(c) = 1.
A largely studied class of fuzzy subalgebras is the one in which the operation coincides with the minimum. In such a case it is immediate to prove the following proposition.
Proposition. A fuzzy subset s of an algebraic structure defines a fuzzy subalgebra if and only if for every λ in [0,1] , the closed cut {x D : s(x)≥ λ} of s is a subalgebra.
The "fuzzy subgroups" and the "fuzzy submonoids" are particularly interesting classes of fuzzy subalgebras. In such a case a fuzzy subset "s" of a monoid (M,•,u) is a fuzzy submonoid if and only if 1) s(u) =1 2) s(x)s(y) ≤ s(x•y)where u is the neutral element in A. Given a group G, a "fuzzy subgroup" of G is a fuzzy submonoid s of G such that 3) s(x) ≤ s(x-1).It is possible to prove that the notion of fuzzy subgroup is strictly related with the notions of "fuzzy equivalence". In fact, assume that S is a set, G a group of transformations in S and (G,s) a fuzzy subgroup of G. Then, by setting
e(x,y) = Sup{s(h) : h is an element in G such that h(x) = y}
we obtain a fuzzy equivalence. Conversely, let e be a fuzzy equivalence in S and, for every transformation h of S, set
s(h)= Inf{e(x,h(x)): xS}.
Then s defines a fuzzy subgroup of transformation in S. In a similar way we can relate the fuzzy submonoids with the fuzzy orders.
Bibliography
* Klir, G. and Bo Yuan, "Fuzzy Sets and Fuzzy Logic" (1995) ISBN 978-0-13-101171-7
* Zimmermann H., "Fuzzy Set Theory and its Applications" (2001), ISBN 978-0-7923-7435-0.
* Chakraborty H. and Das S., "On fuzzy equivalence 1", Fuzzy Sets and Systems, 11 (1983), 185-193.
* Demirci M., Recasens J., "Fuzzy groups, fuzzy functions and fuzzy equivalence relations", Fuzzy Sets and Systems, 144 (2004), 441-458.
* Di Nola A., Gerla G., "Lattice valued algebras", Stochastica, 11 (1987), 137-150.
* Hájek P., "Metamathematics of fuzzy logic". Kluwer 1998.
* Klir G. , UTE H. St.Clair and Bo Yuan "Fuzzy Set Theory Foundations and Applications",1997.
* Gerla G., Scarpati M., "Similarities, Fuzzy Groups: a Galois Connection", J. Math. Anal. Appl., 292 (2004), 33-48.
*Mordeson J., Kiran R. Bhutani and Azriel Rosenfeld. "Fuzzy Group Theory", Springer Series: Studies in Fuzziness and Soft Computing, Vol. 182, 2005.
* Rosenfeld A., "Fuzzy groups", J. Math. Anal. Appl., 35 (1971), 512-517.
* Zadeh L.A., "Fuzzy Sets", ‘’Information and Control’’, 8 (1965) 338353.
* Zadeh L.A., "Similarity relations and fuzzy ordering", Inform. Sci. 3 (1971) 177–200.
Wikimedia Foundation. 2010.