DIIS

DIIS

DIIS (direct inversion in the iterative subspace or direct inversion of the iterative subspace), also known as Pulay mixing, is an extrapolation technique. DIIS was developed by Peter Pulay in the field of computational quantum chemistry with the intent to accelerate and stabilize the convergence of the Hartree–Fock self consistent field method.[1]

At a given iteration, the approach constructs a linear combination of approximate error vectors from previous iterations. The coefficients of the linear combination are determined so to best approximate, in a least squares sense, the null vector. The newly determined coefficients are then used to extrapolate the function variable for the next iteration.

Details

At each iteration, an approximate error vector, ei, corresponding to the variable value, pi is determined. After sufficient iterations, a linear combination of m previous error vectors is constructed

\mathbf e_{m+1}=\sum_i^m\ c_i\mathbf e_i.

The DIIS method seeks to minimize the norm of em+1 under the constraint that the coefficients sum to one. This is done by a Lagrange multiplier technique. Introducing an undetermined multiplier λ, a Lagrangian is constructed as


\begin{align}
L&=||e_{m+1}||^2-\lambda\left(\sum_i\ c_i-1\right),\\
&=\sum_{ij}c_jB_{ji}c_i-\lambda\left(\sum_i\ c_i-1\right),\ \mathrm{where}\ B_{ij}=\langle\mathbf e_j|\mathbf e_i\rangle.
\end{align}

Equating the derivatives of L, with respect to the coefficients and the multiplier, equal to zero, leads to m + 1 linear equations to be solved for the m coefficients. The coefficients are then used to update the function variable as

\mathbf p_{m+1}=\sum_i^m c_i\mathbf p_i.

References

  1. ^ Pulay, Péter (1980). "Convergence acceleration of iterative sequences. the case of SCF iteration". Chemical Physics Letters 73 (2): 393–398. doi:10.1016/0009-2614(80)80396-4. 

External links



Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Diis manĭbus sacrum — (lat., den Geistern Verstorbener heilig), gewöhnlich abbrevirt D. M. S., auf Todtendenkmälern, so v.w. dem Andenken geweihet …   Pierer's Universal-Lexikon

  • si diis placet — (izg. sȋ dȉis plȁcet) DEFINICIJA 1. ako je bogovima pravo 2. iron. ako bogovi mogu takvu glupost podnijeti ETIMOLOGIJA lat …   Hrvatski jezični portal

  • Lta diis placuit. — lta diis placuit. См. Так ему на роду написано было …   Большой толково-фразеологический словарь Михельсона (оригинальная орфография)

  • Si diis placet — (lat.), 1) wenn es den Göttern gefällt; das wolle Gott; 2) ironisch so v.w. wenn das je einmal geschieht …   Pierer's Universal-Lexikon

  • Si dĭis plācet — (lat.), wenn die Götter wollen …   Meyers Großes Konversations-Lexikon

  • Victrix causa diis placŭit, sed victa Catōni — (lat.), »die siegreiche Sache gefiel den Göttern, aber die unterliegende dem Cato«, oft zitierter Hexameter aus Lucanus »Pharsalia« (1,128) …   Meyers Großes Konversations-Lexikon

  • Victrix causa diïs placuit, sed victa Catoni — Victrix causa diïs placuit, sed victa Catōni (lat.), die siegreiche Sache gefiel den Göttern, aber die unterliegende dem Cato; Zitat aus Lucanus …   Kleines Konversations-Lexikon

  • Si diis placet — Si diis placet, lat., wenn es den Göttern gefällt …   Herders Conversations-Lexikon

  • COMMENDARE Diis vel Commendare simpliciter — apud Ael. Spartian. in Adriano, c. 26. Natali suô ultimô, quum Atnonium commendaret, praetexta sponte delaspsa caput eius operuit: est εὔκεςθαι ὑπέρ τινος. Nempe rem divinam faciens Adrianus, vota pro Antonino, recens in filium adoptato,… …   Hofmann J. Lexicon universale

  • PANIFICIA Diis olim oblata — vide infra Verbena, ubi de Serapidis cultu: et Iustinum l. 20. c. 2. ubi de Minerva a Crotoniatis placata …   Hofmann J. Lexicon universale

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”