- Lucas' theorem
In
number theory , the Lucas's theorem states the following:Let "m" and "n" be non-negative integers, "p" a prime, and: and:be the base "p" expansions of "m" and "n" respectively. Then:where denotes the
binomial coefficient of "m" and "n", also known as "m choose n".In particular, a binomial coefficient is divisible by a prime "p" as soon as at least one of the base "p" digits of "n" is greater than the corresponding digit of "m".
Lucas theorem first appeared in 1878 by
Edouard Lucas . [
*cite journal| author=Edouard Lucas |title=Théorie des Fonctions Numériques Simplement Périodiques |journal=American Journal of Mathematics |year=1878 |volume=1 |issue=2 |pages=184-196 |doi=10.2307/2369308 |url=http://www.jstor.org/stable/2369308 |id=MR|id=1505161 (part 1);
*cite journal| author=Edouard Lucas |title=Théorie des Fonctions Numériques Simplement Périodiques |journal=American Journal of Mathematics |year=1878 |volume=1 |issue=3 |pages=197-240 |doi=10.2307/2369311 |url=http://www.jstor.org/stable/2369311 |id=MR|id=1505164 (part 2);
*cite journal| author=Edouard Lucas |title=Théorie des Fonctions Numériques Simplement Périodiques |journal=American Journal of Mathematics |year=1878 |volume=1 |issue=4 |pages=289-321 |doi=10.2307/2369373 |url=http://www.jstor.org/stable/2369373 |id=MR|id=1505176 (part 3)]References
External links
* [http://planetmath.org/encyclopedia/LucassTheorem.html Lucas's Theorem @ PlanetMath]
*Andrew Granville. [http://www.cecm.sfu.ca/organics/papers/granville/index.html The Arithmetic Properties of Binomial Coefficients] .
Wikimedia Foundation. 2010.