# Rise time

Rise time

In electronics, when describing a voltage or current step function, rise time (also risetime) refers to the time required for a signal to change from a specified low value to a specified high value. Typically, these values are 10% and 90% of the step height. The output signal of a system is characterized also by fall time: both parameters depend on rise and fall times of input signal and on the characteristics of the system.

Overview

Rise time is an analog parameter of fundamental importance in high speed electronics, since it is a measure of the ability of a circuit to respond to fast input signals. Many efforts over the years have been made to reduce the rise times of generators, analog and digital circuits, measuring and data transmission equipment, focused on the research of faster electron devices and on techniques of reduction of stray circuit parameters (mainly capacitances and inductances). For applications outside the realm of high speed electronics, long (compared to the attainable state of the art) rise times are sometimes desirable: examples are the dimming of a light, where a longer rise-time results, amongst other things, in a longer life for the bulb, or digital signals apt to the control of analog ones, where a longer rise time means lower capacitive feedthough, and thus lower coupling noise.

Simple examples of calculation of rise time

The aim of this section is the calculation of rise time of step response for some simple systems: all notations and assumptions required for the following analysis are listed here.

*$t_r,$ is the rise time of the analyzed system, measured in seconds.

*$f_L,$ is the "low frequency cutoff" (-3 dB point) of the analyzed system, measured in hertz.

*$f_H,$ is "high frequency cutoff" (-3 dB point) of the analyzed system, measured in hertz.

*$h\left(t\right),$ is the "impulse response" of the analyzed system in the time domain.

*$H\left(omega\right),$ is the "frequency response" of the analyzed system in the frequency domain.

*The bandwidth is defined as

:$BW = f_\left\{H\right\} - f_\left\{L\right\},$

:and since the low frequency cutoff $f_L$ is usually several decades lower than the high frequency cutoff $f_H$,

:$BWcong f_H,$

*All systems analyzed here have a frequency response which extends to 0 (low-pass systems), thus :$f_L=0,Leftrightarrow,f_H=BW$ exactly.
*All systems analyzed are thought as electrical networks and all the signals are thought as voltages for the sake of simplicity: the input is a step function of $V_0$ volts.

Gaussian response system

A system is said to have a Gaussian response if it is characterized by the following frequency response

:$H\left(omega\right)=e^\left\{-frac\left\{omega^2\right\}\left\{sigma^2$

where $sigma>0$ is a constant, related to the high frequency cutoff by the following relation:

:$f_H = frac\left\{sigma\right\}\left\{2pi\right\} sqrt\left\{frac\left\{3\right\}\left\{20log e cong 0.0935 sigma$

The corresponding impulse response can be calculated using the inverse Fourier transform of the shown frequency response

:$mathcal\left\{F\right\}^\left\{-1\right\}\left\{H\right\}\left(t\right)=h\left(t\right)=frac\left\{1\right\}\left\{2pi\right\}intlimits_\left\{-infty\right\}^\left\{+infty\right\} \left\{e^\left\{-frac\left\{omega^2\right\}\left\{sigma^2e^\left\{iomega t domega=frac\left\{sigma\right\}\left\{2sqrt\left\{pie^\left\{-frac\left\{1\right\}\left\{4\right\}sigma^2t^2\right\}$

Applying directly the definition of step response

:$V\left(t\right) = V_0\left\{H*h\right\}\left(t\right) = frac\left\{V_0\right\}\left\{sqrt\left\{piintlimits_\left\{-infty\right\}^\left\{frac\left\{sigma t\right\}\left\{2e^\left\{- au^2\right\}d au = frac\left\{V_0\right\}\left\{2\right\}left \left[1+mathrm\left\{erf\right\}left\left(frac\left\{sigma t\right\}\left\{2\right\} ight\right) ight\right] Leftrightarrowfrac\left\{V\left(t\right)\right\}\left\{V_0\right\}=frac\left\{1\right\}\left\{2\right\}left \left[1+mathrm\left\{erf\right\}left\left(frac\left\{sigma t\right\}\left\{2\right\} ight\right) ight\right]$

Solving for "t"'s the two following equations by using known properties of the error function

:$0.1=frac\left\{1\right\}\left\{2\right\}left \left[1+mathrm\left\{erf\right\}left\left(frac\left\{sigma t_1\right\}\left\{2\right\} ight\right) ight\right] qquad0.9=frac\left\{1\right\}\left\{2\right\}left \left[1+mathrm\left\{erf\right\}left\left(frac\left\{sigma t_2\right\}\left\{2\right\} ight\right) ight\right]$

the value $t=-t_1=t_2$ is then known and since $t_r=t_2-t_1=2t$

:$t_r=frac\left\{4\right\}\left\{sigma\right\}\left\{mathrm\left\{erf\right\}^\left\{-1\right\}\left(0.8\right)\right\}congfrac\left\{0.3394\right\}\left\{f_H\right\}$

and then

:$t_rcongfrac\left\{0.34\right\}\left\{BW\right\}quadLongleftrightarrowquad BWcdot t_rcong 0.34$

One stage low pass RC network

For a simple one stage low pass $RC$ network, rise time is proportional to the network time constant $au=RC$:

:$t_rcong 2.197 au,$

The proportionality constant can be derived by using the output response of the network to a step function input Signal (electrical engineering) of $V_0$ amplitude, aka its step response:

:$V\left(t\right) = V_0\left(1-e^\left\{-frac\left\{t\right\}\left\{ au\right)quadiffquadfrac\left\{V\left(t\right)\right\}\left\{V_0\right\}=\left(1-e^\left\{-frac\left\{t\right\}\left\{ au\right)$

Solving for "t"'s the two equations

:$0.1 = \left(1-e^\left\{-frac\left\{t_1\right\}\left\{ au\right)qquad 0.9 = \left(1-e^\left\{-frac\left\{t_2\right\}\left\{ au\right),$

the times $t_1$ and $t_2$ to 10% and 90% of steady-state value thus known

:$t_1= au\left(\left\{ln 10\right\}-\left\{ln 9\right\}\right)qquad t_2= auln\left\{10\right\},$

Subtracting $t_1$ from $t_2$

:$t_2-t_1= aucdot\left\{ln 9\right\}$

which is the rise time. Therefore rise time is proportional to the time constant:

:$t_r = aucdotln 9cong aucdot 2.197$

Now, noting that

:$au = RC = frac\left\{1\right\}\left\{2pi f_H\right\}$

then

:$t_rcongfrac\left\{2.197\right\}\left\{2pi f_H\right\}congfrac\left\{0.349\right\}\left\{f_H\right\}$

and since the high frequency cutoff is equal to the bandwidth

:$t_rcongfrac\left\{0.35\right\}\left\{BW\right\}quadLongleftrightarrowquad BWcdot t_rcong 0.35$

This formula implies that if the bandwidth of an oscilloscope is 350 MHz, its 10% to 90% risetime is 1 nanosecond.

Rise time of cascaded blocks

Consider a system composed by $n$ cascaded non interacting blocks, each having a rise time $t_\left\{r_i\right\}$ and no overshoot, whose input signal has a rise time $t_\left\{r_S\right\}$: then its output signal has a rise time equal to

:$t_\left\{r_O\right\}=sqrt\left\{t_\left\{r_S\right\}^2+t_\left\{r_1\right\}^2+dots+t_\left\{r_n\right\}^2\right\}$

This result is a consequence of the central limit theorem, as reported in Harvnb|Valley|Wallman|1948|pp=77-78 and proved by Henry Wallman in Harv|Wallman|1950.

Factors affecting rise time

Rise time values in a resistive circuit are primarily due to stray capacitance and inductance in the circuit. Because every circuit has not only resistance, but also capacitance and inductance, a delay in voltage and/or current at the load is apparent until the steady state is reached. In a pure RC circuit, the output risetime (10% to 90%), as shown above, is approximately equal to $2.2 RC$.

Rise time in control applications

In control theory, it is often defined as the 10% to 90% time from a former setpoint to new setpoint. The quadratic approximation for normalized rise time for a 2nd-order system, step response, no zeros is::$t_r cdotomega_0= 2.230zeta^2-0.078zeta+1.12,$ where ζ is the damping ratio and ω0 is the natural frequency of the network.

However, the proper calculation for rise time of a system of this type is::$t_r cdotomega_n= frac\left\{1\right\}\left\{sqrt\left\{1-zeta^2 an^\left\{-1\right\}left \left( \left\{frac\left\{sqrt\left\{1-zeta^2\left\{zeta ight \right)$where ζ is the damping ratio and ωn is the natural frequency of the network.

*Fall time
*Frequency response
*Impulse response
*Step response
*Transition time
*Settling time
*Henry Wallman

References

*United States Federal Standard 1037C: Glossary of Telecommunications Terms
*Harvrefcol
Surname1 = Valley
Given1 = George E. Jr.
Surname2 = Wallman
Given2= Henry
Title = "Vacuum Tube Amplifiers", MIT Radiation Laboratory Series 18
Publisher = McGraw-Hill.
Place = New York
Year = 1948
Paragraph 2 of chapter 2 and paragraphs 1 to 7 of chapter 7 .
*Harvrefcol
Surname = Wallman
Given = Henry
Title = Transient response and the central limit theorem of probability
Journal = [http://www.ams.org/cgi-bin/bookstore/bookpromo/psapmseries Proceedings of Symposia in Applied Mathematics]
Volume = 2
Page = 91
Publisher = AMS.
Place = Providence
Year=1950
. The paper containing the formula for the rise time of cascaded amplifier blocks.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Rise-time — Unter Anstiegszeit und Abfallzeit (engl. rise time und fall time) versteht man in der Messtechnik und der Digitaltechnik die Zeit, die ein Pegelwechsel eines (idealerweise) rechteckförmigen Signals real benötigt, um seinen Signalpegel zwischen… …   Deutsch Wikipedia

• Rise time — Unter Anstiegszeit und Abfallzeit (engl. rise time und fall time) versteht man in der Messtechnik und der Digitaltechnik die Zeit, die ein Pegelwechsel eines (idealerweise) rechteckförmigen Signals real benötigt, um seinen Signalpegel zwischen… …   Deutsch Wikipedia

• rise time — didėjimo trukmė statusas T sritis fizika atitikmenys: angl. building up time; build up time; rise time vok. Anklingzeit, f; Anstiegszeit, f rus. время нарастания, n pranc. temps de croissance, m; temps de montée, m …   Fizikos terminų žodynas

• rise time — kilimo trukmė statusas T sritis automatika atitikmenys: angl. rise time vok. Anregelzeit, f; Anstiegszeit, f rus. время нарастания, n pranc. temps de montée, m …   Automatikos terminų žodynas

• Rise time und fall time — Unter Anstiegszeit und Abfallzeit (engl. rise time und fall time) versteht man in der Messtechnik und der Digitaltechnik die Zeit, die ein Pegelwechsel eines (idealerweise) rechteckförmigen Signals real benötigt, um seinen Signalpegel zwischen… …   Deutsch Wikipedia

• rise time — the length of time a waveform takes to rise from 10 per cent to 90 per cent of its peak amplitude. 2. in neurophysiology, the time between the start of a change in potential and when it reaches its positive peak …   Medical dictionary

• Rise time — A&V Time required for a pulse edge to rise from 10% to 90% of the final value …   Audio and video glossary

• rise time — n. Electronics the time required for a pulse to rise from 10 percent to 90 percent of its steady value …   Useful english dictionary

• pulse rise time — impulso kilimo trukmė statusas T sritis fizika atitikmenys: angl. pulse leading edge time; pulse rise time vok. Flankenanstiegszeit, f; Impulsanstiegszeit, f; Impulsvorderflankendauer, f rus. время нарастания импульса, n pranc. durée de flanc… …   Fizikos terminų žodynas

• scintillation rise time — blyksėjimų stiprėjimo trukmė statusas T sritis fizika atitikmenys: angl. scintillation rise time vok. Szintillationsanstiegszeit, f rus. время нарастания сцинтилляций, f pranc. temps de montée de la scintillation, m …   Fizikos terminų žodynas