Brauer-Siegel theorem

Brauer-Siegel theorem

In mathematics, the Brauer-Siegel theorem, named after Richard Brauer and Carl Ludwig Siegel, is an asymptotic result on the behaviour of algebraic number fields, obtained by Richard Brauer and Carl Ludwig Siegel. It attempts to generalise the results known on the class numbers of imaginary quadratic fields, to a more general sequence of number fields

:"K"1, "K"2, ... .

In all cases other than the rational field Q and imaginary quadratic fields, the regulator "R""i" of "K""i" must be taken into account, because "K"i then has units of infinite order by Dirichlet's unit theorem. The quantitative hypothesis of the standard Brauer-Siegel theorem is that if "D""i" is the discriminant of "K""i", then

: ["K""i":Q] /log |"D""i"| → 0 as "i" → ∞.

Assuming that, and the algebraic hypothesis that "K""i" is a Galois extension of Q, the conclusion is that

:log ("h""i""R""i")/log √|"D""i"|) → 1 as "i" → ∞

where "h""i" is the class number of "K""i".

This result is ineffective, as indeed was the result on quadratic fields on which it built. Effective results in the same direction were initiated in work of Harold Stark from the early 1970s.

References

* Richard Brauer, "On the Zeta-Function of Algebraic Number Fields", Amer. J. Math. 69 (1947), 243-250.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Richard Brauer — Pour les articles homonymes, voir Brauer. Richard et Ilse Brauer en 1970 Richard Dagobert Brauer (10 février 1901 à Berlin – 17 avril 1977 à Belmont (Massachusetts)  …   Wikipédia en Français

  • Richard Brauer — Infobox Scientist name = Richard Brauer box width = image width = 150px caption = Richard Brauer birth date = February 10, 1901 birth place = death date = April 17, 1977 death place = residence = citizenship = nationality = United States, Germany …   Wikipedia

  • Carl Siegel — Pour les articles homonymes, voir Siegel. Carl Ludwig Siegel en 1975 Carl Ludwig Siegel (31 décembre  …   Wikipédia en Français

  • Carl Ludwig Siegel — Infobox Scientist name = Carl Ludwig Siegel image width = 242 x 360 22k caption = Carl Ludwig Siegel birth date = birth date|1896|12|31 birth place = Berlin, Germany death date = death date and age|1981|4|4|1896|12|31 death place = Göttingen,… …   Wikipedia

  • Carl Ludwig Siegel — in Göttingen, 1975 Carl Ludwig Siegel (* 31. Dezember 1896 in Berlin; † 4. April 1981 in Göttingen) war ein deutscher Mathematiker; sein Spezialgebiet war die Zahlentheorie. Er gilt als einer der bedeutendsten Mathematiker des 20. Jahrhu …   Deutsch Wikipedia

  • Liste de théorèmes — par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom du théorème comprend des noms de mathématiciens ou de physiciens, on se base sur le premier nom propre cité. Si le nom du théorème …   Wikipédia en Français

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • Segal — (and its variants) can refer to the following:Peopleegal*Alan F. Segal, American Professor of Jewish Studies *Brandon Segal, ice hockey player *Dan Segal, a British mathematician *Daniel Scott Segal, also known as Dancing Eagle, drummer for The… …   Wikipedia

  • Discriminant of an algebraic number field — A fundamental domain of the ring of integers of the field K obtained from Q by adjoining a root of x3 − x2 − 2x + 1. This fundamental domain sits inside K ⊗QR. The discriminant of K is 49 = 72.… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”