Bloch sphere

Bloch sphere

In quantum mechanics, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system named after the physicist Felix Bloch. Alternatively, it is the pure state space of a 1 qubit quantum register. The Bloch sphere is actually geometrically a sphere and the correspondence between elements of the Bloch sphere and pure states can be explicitly given. In generalized form, the Bloch sphere may also refer to the analogous space of an "n"-level quantum system.

Quantum mechanics is mathematically formulated in Hilbert space or Projective Hilbert space. The space of pure states of a quantum system is given by the rays in the Hilbert space (the "points" of projective Hilbert space). The space of rays in any vector space is a projective space, and in particular, the space of rays in a two dimensional Hilbert space is the complex projective line, which is isomorphic to a sphere. Each pair of antipodal points on the Bloch sphere corresponds to a mutually exclusive pair of states of the particle, namely, spin up and spin down for a Stern-Gerlach experiment oriented along a particular axis in physical space.

The natural metric on the Bloch sphere is the Fubini-Study metric.

The qubit

To show this correspondence explicitly, consider the qubit description of the Bloch sphere; any state psi can be written as a complex superposition of the ket vectors |0 angle and |1 angle ; moreover since phase factors do not affect physical state, we can take the representation so that the coefficient of |0 angle is real and non-negative. Thus psi has a representation as: |psi angle = cos heta , |0 angle + e^{i phi} sin heta ,|1 angle quad = quad cos heta , |0 angle , + , ( cos phi + i sin phi ) , sin heta ,|1 angle with : 0 leq heta < frac{pi}{2}, quad 0 leq phi < 2 pi.

Except in the case psi is one of the ket vectors |0 angle or |1 angle, the representation is unique, i.e. the parameters phi , and heta , uniquely specify a point on the unit sphere of Euclidean space mathbb{R}^{3}, viz. the point whose coordinates (x,y,z) are: egin{matrix} x & = & sin 2 heta imes cos phi \ y & = & sin 2 heta imes sin phi \ z & = & cos 2 heta .end{matrix}

A generalization for pure states

Consider an "n"-level quantum mechanical system. This system is described by an "n"-dimensional Hilbert space "H""n". The pure state space is by definition the set of 1-dimensional rays of "H""n".

Theorem. Let U("n") be the Lie group of unitary matrices of size "n". Then the pure state space of "H""n" can be identified with the compact coset space: operatorname{U}(n) /(operatorname{U}(n-1) imes operatorname{U}(1)).

To prove this fact, note that there is a natural group action of U("n") on the set of states of "H""n". This action is continuous and transitive on the pure states. For any state ψ, the isotropy group of ψ, (defined as the set of elements "g" of U("n") such that "g" ψ = ψ) is isomorphic to the product group

: operatorname{U}(n-1) imes operatorname{U}(1).

In linear algebra terms, this can be justified as follows. Any "g" of U("n") that leaves ψ invariant must have ψ as an eigenvector. Since the corresponding eigenvalue must be a complex number of modulus 1, this gives the U(1) factor of the isotropy group. The other part of the isotropy group is parametrized by the unitary matrices on the orthogonal complement of ψ, which is isomorphic to U("n" - 1). From this the assertion of the theorem follows from basic facts about transitive group actions of compact groups.

The important fact to note above is that the "unitary group acts transitively" on pure states.

Now the (real) dimension of U("n") is "n"2. This is easy to see since the exponential
A mapsto e^{i A} is a local homeomorphism from the space of self-adjoint complex matrices to U("n"). The space of self-adjoint complex matrices has real dimension "n"2.

Corollary. The real dimension of the pure state space of "H""n" is2"n" − 2.

In fact,: n^2 - ((n-1)^2 +1) = 2 n - 2. quad

Let us apply this to consider the real dimension of an "m" qubit quantum register. The corresponding Hilbert space has dimension 2"m".

Corollary. The real dimension of the pure state space of an "m" qubit quantum register is 2"m"+1 − 2.

The geometry of density operators

Formulations of quantum mechanics in terms of pure states are adequate for isolated systems; in general quantum mechanical systems need to be described in terms of density operators. However, while the Bloch sphere parametrizes not only pure states but mixed states for 2-level systems, for states of higher dimensions there is difficulty in extending this to mixed states. The topological description is complicated by the fact that the unitary group does not act transitively on density operators. The orbits moreover are extremely diverse as follows from the following observation:

Theorem. Suppose "A" is a density operator on an "n" level quantum mechanical system whose distinct eigenvalues are μ1, ..., μ"k" with multiplicities "n"1, ...,"n""k". Then the group ofunitary operators "V" such that "V A V"* = "A" is isomorphic (as a Liegroup) to:operatorname{U}(n_1) imes cdots imes operatorname{U}(n_k).In particular the orbit of "A" is isomorphic to:operatorname{U}(n)/(operatorname{U}(n_1) imes cdots imes operatorname{U}(n_k)).

We note here that, in the literature, one can find non-Bloch type parametrizations of (mixed) states that do generalize to dimensions higher than 2.

References

* Darius Chrusinski, " [http://www.iop.org/EJ/article/1742-6596/30/1/002/jpconf6_30_002.pdf Geometric Aspect of Quantum Mechanics and Quantum Entanglement] ", "Journal of Physics Conference Series", 39 (2006) pp.9-16.
* Alain Michaud, " [http://alainmichaud.net/RabiOscillations.html Rabi Flopping Oscillations] " (2006). "(A small animation of the bloch vector submitted to a resonant excitation.)"
*cite book | author= Singer, Stephanie Frank | title=Linearity, Symmetry, and Prediction in the Hydrogen Atom | publisher=Springer | location=New York | year=2005 | id=ISBN 0-387-24637-1


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Bloch — is a surname. 1. German and Swedish: Variant of Block 2. Danish: from Blok, hence a nickname for a large lumpish person, or from German Block 3. Jewish (Ashkenazic): regional name for someone in Eastern Europe originating from Italy or France,… …   Wikipedia

  • Bloch-Kugel — Die Bloch Kugel wird in der Quantenmechanik verwendet, um den Gesamtzustand eines Zweiniveausystems (beispielsweise ein Qubit) grafisch darzustellen. Benannt wurde sie nach dem Physiker Felix Bloch, der diese übersichtliche Illustration für… …   Deutsch Wikipedia

  • Sphere de Bloch — Sphère de Bloch L état d un système à deux niveau, tel qu un spin 1/2 ou plus généralement un qubit, peut être représenté par un point sur une sphère. La sphère de Bloch, du nom du physicien et mathématicien Félix Bloch, est une représentation… …   Wikipédia en Français

  • Sphère de bloch — L état d un système à deux niveau, tel qu un spin 1/2 ou plus généralement un qubit, peut être représenté par un point sur une sphère. La sphère de Bloch, du nom du physicien et mathématicien Félix Bloch, est une représentation géométrique d un… …   Wikipédia en Français

  • Sphère de Bloch — L état d un système à deux niveau, tel qu un spin 1/2 ou plus généralement un qubit, peut être représenté par un point sur une sphère. La sphère de Bloch, du nom du physicien et mathématicien Félix Bloch, est une représentation géométrique d un… …   Wikipédia en Français

  • Spin — Pour les articles homonymes, voir Spin (homonymie). Interaction d un quark (boule rouge) et d un gluon (boule verte) issus de deux protons (boules orange) dont la projection du spin, représentée par l …   Wikipédia en Français

  • Hopf fibration — In the mathematical field of topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes a 3 sphere (a hypersphere in four dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz Hopf in 1931, it… …   Wikipedia

  • Quantum decoherence — Quantum mechanics Uncertainty principle …   Wikipedia

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • Many-worlds interpretation — The quantum mechanical Schrödinger s cat paradox according to the many worlds interpretation. In this interpretation every event is a branch point; the cat is both alive and dead, even before the box is opened, but the alive and dead cats are in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”