De Moivre's formula

De Moivre's formula

De Moivre's formula, named after Abraham de Moivre, states that for any complex number (and, in particular, for any real number) "x" and any integer "n" it holds that

:left(cos x+isin x ight)^n=cosleft(nx ight)+isinleft(nx ight).,

The formula is important because it connects complex numbers ("i" stands for the imaginary unit) and trigonometry. The expression "cos "x" + "i" sin "x" is sometimes abbreviated to "cis "x".

By expanding the left hand side and then comparing the real and imaginary parts under the assumption that "x" is real, it is possible to derive useful expressions for cos("nx") and sin("nx") in terms of cos("x") and sin("x"). Furthermore, one can use this formula to find explicit expressions for the "n"-th roots of unity, that is, complex numbers "z" such that "zn" = 1.

Derivation

Although historically proved earlier, de Moivre's formula can easily be derived from Euler's formula

:e^{ix} = cos x + isin x,

and the exponential law

:left( e^{ix} ight)^n = e^{inx} .,

Then, by Euler's formula,

:e^{i(nx)} = cos(nx) + isin(nx).,

Proof by induction

We consider three cases.

For "n" > 0, we proceed by mathematical induction. When "n" = 1, the result is clearly true. For our hypothesis, we assume the result is true for some positive integer "k". That is, we assume

:left(cos x + i sin x ight)^k = cosleft(kx ight) + i sinleft(kx ight). ,

Now, considering the case "n" = "k" + 1:

:egin{alignat}{2} left(cos x+isin x ight)^{k+1} & = left(cos x+isin x ight)^{k} left(cos x+isin x ight)\ & = left [cosleft(kx ight) + isinleft(kx ight) ight] left(cos x+isin x ight) &&qquad mbox{by the induction hypothesis}\ & = cos left(kx ight) cos x - sin left(kx ight) sin x + i left [cos left(kx ight) sin x + sin left(kx ight) cos x ight] \ & = cos left [ left(k+1 ight) x ight] + isin left [ left(k+1 ight) x ight] &&qquad mbox{by the trigonometric identities}end{alignat}

We deduce that the result is true for "n" = "k" + 1 when it is true for "n" = "k". By the principle of mathematical induction it follows that the result is true for all positive integers "n"≥1.

When "n" = 0 the formula is true since cos (0x) + isin (0x) = 1 + i0 = 1, and (by convention) z^0 = 1.

When "n" < 0, we consider a positive integer "m" such that "n" = −"m". So:egin{align} left(cos x + isin x ight)^{n} & = left(cos x + isin x ight)^{-m}\ & = frac{1}{left(cos x + isin x ight)^{m\ & = frac{1}{left(cos mx + isin mx ight)}\ & = cosleft(mx ight) - isinleft(mx ight)\ & = cosleft(-mx ight) + isinleft(-mx ight)\ & = cosleft(nx ight) + isinleft(nx ight).end{align}

Hence, the theorem is true for all integer values of "n".

Formulas for cosine and sine individually

Being an equality of complex numbers, one necessarily has equality both of the real parts and of the imaginary parts of both members of the equation. If "x", and therefore also cos x and sin x, are real numbers, then the identity of these parts can be written (interchanging sides) as:egin{alignat}2 cos(nx)&=sum_{k=0}^{lfloor n/2 floor}{ binom{n}{2k(-1)^k(cos{x})^{n-2k}(sin{x})^{2k}& &=sum_{k=0}^{lfloor n/2 floor}{ binom{n}{2k(cos{x})^{n-2k}((cos{x})^2-1)^k\ sin(nx)&=sum_{k=0}^{lfloor (n-1)/2 floor}{ binom{n}{2k+1(-1)^k(cos{x})^{n-2k-1}(sin{x})^{2k+1}& &=(sin{x})sum_{k=0}^{lfloor(n-1)/2 floor}{ binom{n}{2k+1(cos{x})^{n-2k-1}((cos{x})^2-1)^k.\end{alignat}These equations are in fact even valid for complex values of "x", because both sides are holomorphic functions of "x", and two such functions that coincide on the real axis necessarily coincide on the whole complex plane. Here are the concretre instances of these equations for n=2 and n=3::egin{alignat}2 cos(2x) &= (cos{x})^2 +((cos{x})^2-1) &&= 2(cos{x})^2-1\ sin(2x) &= 2(sin{x})(cos{x})\ cos(3x) &= (cos{x})^3 +3cos{x}((cos{x})^2-1) &&= 4(cos{x})^3-3cos{x}\ sin(3x) &= 3(cos{x})^2(sin{x})-(sin{x})^3 &&= 3sin{x}-4(sin{x})^3.\end{alignat}The right hand side of the formula for cos(nx) is in fact the value T_n(cos x) of the Chebyshev polynomial T_n at cos x.

Generalization

The formula is actually true in a more general setting than stated above: if "z" and "w" are complex numbers, then

:left(cos z + isin z ight)^w

is a multivalued function while

:cos (wz) + i sin (wz),

is not. Therefore one can state that

:cos (wz) + i sin (wz) , is one value of left(cos z + isin z ight)^w.,

Applications

This formula can be used to find the n^{th} roots of a complex number. If z is a complex number, written in polar form as

: z=rleft(cos x+isin x ight),,

then

: z^}^{frac{1}{n}= left [ rleft( cos x+isin x ight) ight] ^ }^{frac{1}{n}= r^}^{frac{1}{n} left [ cos left( frac{x+2kpi}{n} ight) + isin left( frac{x+2kpi}{n} ight) ight]

where k is an integer, to get the n different roots of z one only needs to consider values of k from 0 to n-1.

ee also

* Euler's formula
* Root of unity

References

* Milton Abramowitz and Irene A. Stegun, "Handbook of Mathematical Functions", (1964) Dover Publications, New York. ISBN 0-486-61272-4. "(p. 74)".

External links

* [http://demonstrations.wolfram.com/DeMoivresTheoremForTrigIdentities/ De Moivre's Theorem for Trig Identities] by Michael Croucher, The Wolfram Demonstrations Project.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • de Moivre's formula — In mathematics, de Moivre s formula (a.k.a. De Moivre s theorem), named after Abraham de Moivre, states that for any complex number (and, in particular, for any real number) x and integer n it holds that The formula is important because it… …   Wikipedia

  • Fórmula de Euler — La fórmula o relación de Euler, atribuida a Leonhard Euler, establece que: para todo número real x. Aquí, e es la base del logaritmo natural, i es la unidad imaginaria, sin x y cos x son funciones trigonométricas. O bien: siendo z la… …   Wikipedia Español

  • Abraham de Moivre — Moivre redirects here; for the French commune see Moivre, Marne. Abraham de Moivre Abraham de Moivre Born …   Wikipedia

  • Fórmula de De Moivre — La fórmula de De Moivre nombrada así por Abraham de Moivre afirma que para cualquier número complejo (y en particular, para cualquier número real) x y para cualquier entero n se verifica que: Esta fórmula es importante porque conecta a los… …   Wikipedia Español

  • Moivre, Abraham de — ▪ French mathematician born May 26, 1667, Vitry, Fr. died Nov. 27, 1754, London       French mathematician who was a pioneer in the development of analytic trigonometry and in the theory of probability.       A French Huguenot, de Moivre was… …   Universalium

  • Fórmula de De Moivre — La fórmula de De Moivre afirma que: Esta fórmula es importante porque conecta a los números complejos (i significa unidad imaginaria) con la trigonometría. La expresión cos x + i sen x a veces se abrevia como cis x. Abraham De Moivre fue amigo de …   Enciclopedia Universal

  • de Moivre's law — For the identity connecting complex numbers and trigonometric functions, see de Moivre s formula. De Moivre s Law is a survival model applied in actuarial science, named for Abraham de Moivre.[1][2][3] It is a simple law of mortality based on a… …   Wikipedia

  • de Moivre's theorem — may be: de Moivre s formula – a trigonometric identity Theorem of de Moivre–Laplace – a central limit theorem This disambiguation page lists articles associated with the same title. If an internal link led you h …   Wikipedia

  • Euler's formula — This article is about Euler s formula in complex analysis. For Euler s formula in algebraic topology and polyhedral combinatorics see Euler characteristic.   Part of a series of articles on The mathematical constant e …   Wikipedia

  • De Moivre's theorem — The de Moivres Theorem may refer to: *de Moivre s formula a trigonometric identity *Theorem of de Moivre–Laplace a central limit theorem …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”