Orientifold

Orientifold

In theoretical physics orientifold is a generalization of the notion of orbifold, proposed by Augusto Sagnotti in 1987. The novelty is that in the case of string theory the non-trivial element(s) of the orbifold group includes the reversal of the orientation of the string. Orientifolding therefore produces unoriented strings—strings that carry no "arrow" and whose two opposite orientations are equivalent. Type I string theory is the simplest example of such a theory and can be obtained by orientifolding type IIB string theory.

In mathematical terms, given a smooth manifold \mathcal{M}, two discrete, freely acting, groups G1 and G2 and the worldsheet parity operator Ωp (such that \Omega_{p} : \sigma \to 2\pi - \sigma) an orientifold is expressed as the quotient space \mathcal{M}/(G_{1} \cup \Omega G_{2}). If G2 is empty, then the quotient space is an orbifold. If G2 is not empty, then it is an orientifold.

Contents

Application to String Theory

In string theory \mathcal{M} is the compact space formed by rolling up the theory's extra dimensions, specifically a six dimensional Calabi-Yau space. The simplest viable compact spaces are those formed by modifying a torus.

Supersymmetry Breaking

The six dimensions take the form of a Calabi-Yau for reasons of partially breaking the supersymmetry of the string theory to make it more phenomenologically viable. The Type II string theories have N=2 supersymmetry and compactifying them directly onto a six dimensional torus increases this to N=8. By using a more general Calabi-Yau instead of a torus 3/4 of the supersymmetry is removed to give an N=2 theory again, but now with only 3 large spatial dimensions. To break this further to the only non-trivial phenomenologically viable supersymmetry, N=1, half of the supersymmetry generators must be projected out and this is achieved by applying the orientifold projection.

Effect on Field Content

A simpler alternative to using Calabi-Yaus to break to N=2 is to use an orbifold originally formed from a torus. In such cases it is simpler to examine the symmetry group associated to the space as the group is given in the definition of the space.

The orbifold group G1 is restricted to those groups which work crystallographically on the torus lattice,[1] i.e. lattice preserving. G2 is generated by an involution σ, not to be confused with the parameter signifying position along the length of a string. The involution acts on the holomorphic 3-form Ω (again, not to be confused with the parity operator above) in different ways depending on the particular string formulation being used.[2]

  • Type IIB : σ(Ω) = Ω or σ(Ω) = − Ω
  • Type IIA : \sigma (\Omega) = \bar{\Omega}

The locus where the orientifold action reduces to the change of the string orientation is called the orientifold plane. The involution leaves the large dimensions of space-time unaffected and so orientifolds can have O-planes of at least dimension 3. In the case of σ(Ω) = Ω it is possible that all spatial dimensions are left unchanged and O9 planes can exist. The orientifold plane in type I string theory is the spacetime-filling O9-plane.

More generally, one can consider orientifold Op-planes where the dimension p is counted in analogy with Dp-branes. O-planes and D-branes can be used within the same construction and generally carry opposite tension to one another.

However, unlike D-branes, O-planes are not dynamical. They are defined entirely by the action of the involution, not by string boundary conditions as D-branes are. Both O-planes and D-branes must be taken into account when computing tadpole constraints.

The involution also acts on the complex structure (1,1)-form J

  • Type IIB : σ(J) = J
  • Type IIA : σ(J) = − J

This has the result that the number of moduli parameterising the space is reduced. Since σ is an involution, it has eigenvalues \pm 1. The (1,1)-form basis ωi, with dimension h1,1 (as defined by the Hodge Diamond of the orientifold's cohomology) is written in such a way that each basis form has definite sign under σ. Since moduli Ai are defined by J = Aiωi and J must transform as listed above under σ, only those moduli paired with 2-form basis elements of the correct parity under σ survive. Therefore σ creates a splitting of the cohomology as h^{1,1} = h^{1,1}_{+} + h^{1,1}_{-} and the number of moduli used to describe the orientifold is, in general, less than the number of moduli used to describe the orbifold used to construct the orientifold.[3] It is important to note that although the orientifold projects out half of the supersymmetry generators the number of moduli it projects out can vary from space to space. In some cases h^{1,1} = h^{1,1}_{\pm}, in that all of the (1-1)-forms have the same parity under the orientifold projection. In such cases the way in which the different supersymmetry content enters into the moduli behaviour is through the flux dependent scalar potential the moduli experience,the N=1 case is different from the N=2 case.

Notes

  1. ^ Lust; Reffert; Schulgin; Stieberger (206). "Moduli Stabilization in Type IIB Orientifolds, Lust et al.". Nuclear Physics B 766: 68–149. arXiv:hep-th/0506090. Bibcode 2007NuPhB.766...68L. doi:10.1016/j.nuclphysb.2006.12.018. 
  2. ^ Aldazabal; Camara; Font; Ibanez (2006). "More Dual Fluxes and Moduli Fixing, Font et al.". Journal of High Energy Physics 2006 (05): 070–070. arXiv:hep-th/0602089. Bibcode 2006JHEP...05..070A. doi:10.1088/1126-6708/2006/05/070. 
  3. ^ Matthias Ihl; Daniel Robbins; Timm Wrase (2007). "Toroidal Orientifolds in IIA with General NS-NS Fluxes,". Journal of High Energy Physics 2007 (08): 043–043. arXiv:0705.3410. Bibcode 2007JHEP...08..043I. doi:10.1088/1126-6708/2007/08/043. 

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Orientifold — En théorie des cordes, un orientifold est une construction généralisant la notion d orbifold et qui consiste à combiner une transformation de parité de la feuille d univers de la corde (qui échange des secteurs holomorphe et anti holomorphe sur… …   Wikipédia en Français

  • orientifold — noun An oriented generalization of an orbifold …   Wiktionary

  • Plan orientifold — En théorie des cordes, un plan orientifold est un objet étendu, de même que les D branes mais à la différence de celle ci il est non dynamique. Ce type d objet apparaît dans les construction d orientifold comme le lieu ou vivent les états… …   Wikipédia en Français

  • Brane — En théorie des cordes, une brane, ou p brane, est un objet étendu, dynamique, possédant une énergie sous forme de tension sur son volume d univers, qui est une charge source pour certaines interactions de la même façon qu une particule chargée,… …   Wikipédia en Français

  • D brane — Brane En théorie des cordes une brane, ou p brane, est un objet étendu, dynamique, possédant une énergie sous forme de tension sur son volume d univers, qui est une charge source pour certaines interactions de la même façon qu une particule… …   Wikipédia en Français

  • N-brane — Brane En théorie des cordes une brane, ou p brane, est un objet étendu, dynamique, possédant une énergie sous forme de tension sur son volume d univers, qui est une charge source pour certaines interactions de la même façon qu une particule… …   Wikipédia en Français

  • Mikhail Shifman — Mikhail Arkadyevich (Misha) Shifman Born April 4, 1949(1949 04 04) Riga, Latvia Fields Theoretical High Energy Physics …   Wikipedia

  • Type I string theory — In theoretical physics, type I string theory is one of five consistent supersymmetric string theories in ten dimensions. It is the only one whose strings are unoriented (both orientations of a string are equivalent) and which contains not only… …   Wikipedia

  • Hitchin functional — The Hitchin functional is a mathematical concept with applications in string theory that was introduced by the British mathematician Nigel HitchinThe original article by Hitchin http://arxiv.org/abs/math/0010054] . As with Hitchin s introduction… …   Wikipedia

  • Corde IIA — Théorie des cordes de type II Article principal : Théorie des cordes. En physique théorique, la théorie des cordes de type II est l un des trois types de cordes. Elle ne contient que des cordes fermées qui évoluent dans dix dimensions. Cette …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”