Kepler-Bouwkamp constant

Kepler-Bouwkamp constant

In plane geometry, Kepler-Bouwkamp constantis obtained as a limit of the following sequence.Take a circle of radius 1. Inscribe a regular triangle in this circle. Inscribea circle in this triangle. Inscribe a square init. Inscribe a circle, regular pentagon, circle,
regular hexagon and so forth. Radius of the limiting circle is called the Kepler-Bouwkamp constant.

Computing Kepler-Bouwkamp constant

The Kepler-Bouwkamp constant is equal to prod_{k=3}^infty cosleft(fracpi k ight) = 0.1149420448dots .

References

* S. R. Finch, "Mathematical Constants", Cambridge University Press, 2003

* Adrian R. Kitson "The prime analog of the Kepler-Bouwkamp constant" [http://arxiv.org/abs/math/0608186 math.HO/0608186]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • List of mathematics articles (K) — NOTOC K K approximation of k hitting set K ary tree K core K edge connected graph K equivalence K factor error K finite K function K homology K means algorithm K medoids K minimum spanning tree K Poincaré algebra K Poincaré group K set (geometry) …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”