- Dilation (morphology)
-
Dilation is one of the basic operations in mathematical morphology. Originally developed for binary images, it has been expanded first to grayscale images, and then to complete lattices. The dilation operation usually uses a structuring element for probing and expanding the shapes contained in the input image.
Contents
Binary Operator
In binary morphology, dilation is a shift-invariant (translation invariant) operator, strongly related to the Minkowski addition.
A binary image is viewed in mathematical morphology as a subset of an Euclidean space Rd or the integer grid Zd, for some dimension d. Let E be a Euclidean space or an integer grid, A a binary image in E, and B a structuring element.
The dilation of A by B is defined by:
-
- .
The dilation is commutative, also given by: .
If B has a center on the origin, then the dilation of A by B can be understood as the locus of the points covered by B when the center of B moves inside A. The dilation of a square of side 10, centered at the origin, by a disk of radius 2, also centered at the origin, is a square of side 14, with rounded corners, centered at the origin. The radius of the rounded corners is 2.
The dilation can also be obtained by: , where Bs denotes the symmetric of B, that is, .
Properties of binary dilation
Here are some properties of the binary dilation operator:
- It is translation invariant.
- It is increasing, that is, if , then .
- It is commutative.
- If the origin of E belongs to the structuring element B, then it is extensive, i.e., .
- It is associative, i.e., .
- It is distributive over set union
Grayscale dilation
In grayscale morphology, images are functions mapping a Euclidean space or grid E into , where is the set of reals, is an element larger than any real number, and is an element smaller than any real number.
Grayscale structuring elements are also functions of the same format, called "structuring functions".
Denoting an image by f(x) and the structuring function by b(x), the grayscale dilation of f by b is given by
-
- ,
where "sup" denotes the supremum.
Flat structuring functions
It is common to use flat structuring elements in morphological applications. Flat structuring functions are functions b(x) in the form
-
- ,
where .
In this case, the dilation is greatly simplified, and given by
-
- .
In the bounded, discrete case (E is a grid and B is bounded), the supremum operator can be replaced by the maximum. Thus, dilation is a particular case of order statistics filters, returning the maximum value within a moving window (the symmetric of the structuring function support B).
Dilation on complete lattices
Complete lattices are partially ordered sets, where every subset has an infimum and a supremum. In particular, it contains a least element and a greatest element (also denoted "universe").
Let be a complete lattice, with infimum and minimum symbolized by and , respectively. Its universe and least element are symbolized by U and , respectively. Moreover, let {Xi} be a collection of elements from L.
A dilation is any operator that distributes over the supremum, and preserves the least element. I.e.:
- ,
- .
See also
Bibliography
- Image Analysis and Mathematical Morphology by Jean Serra, ISBN 0126372403 (1982)
- Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances by Jean Serra, ISBN 0-12-637241-1 (1988)
- An Introduction to Morphological Image Processing by Edward R. Dougherty, ISBN 0-8194-0845-X (1992)
Categories: -
Wikimedia Foundation. 2010.