Schauder fixed point theorem
- Schauder fixed point theorem
The Schauder fixed point theorem is an extension of the Brouwer fixed point theorem to topological vector spaces such as Banach spaces. It asserts that if is a compact, convex subset of a topological vector space and is a continuous mapping of into itself, then has a fixed point. It was conjectured and proved for special cases (i.e. the banach case) by Juliusz Schauder. The full result was proven by Robert Cauty in 2001.
A consequence, called Schaefer's fixed point theorem, is particularly useful for proving existence of solutions to nonlinear partial differential equations.Schaefer's theorem is in fact a special case of the far reaching Leray-Schauder theorem which was discovered earlier by Schauder and Jean Leray.The statement is as follows. Let be a continuous and compact mapping of a Banach space into itself, such that the set
:
is bounded. Then has a fixed point.
References
*D. Gilbarg, N. Trudinger, "Elliptic Partial Differential Equations of Second Order". ISBN 3-540-41160-7.
*Robert Cauty, "Solution du problème de point fixe de Schauder", Fund. Math. 170 (2001), 231-246
* E. Zeidler, "Nonlinear Functional Analysis and its Applications, "I" - Fixed-Point Theorems"
External links
* with attached proof.
Wikimedia Foundation.
2010.
Look at other dictionaries:
fixed-point theorem — ▪ mathematics any of various theorems in mathematics dealing with a transformation of the points of a set into points of the same set where it can be proved that at least one point remains fixed. For example, if each real number is squared … Universalium
Fixed point theorems in infinite-dimensional spaces — In mathematics, a number of fixed point theorems in infinite dimensional spaces generalise the Brouwer fixed point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations. The first… … Wikipedia
Fixed-point theorems in infinite-dimensional spaces — In mathematics, a number of fixed point theorems in infinite dimensional spaces generalise the Brouwer fixed point theorem. They have applications, for example, to the proof of existence theorems for partial differential equations. The first… … Wikipedia
Juliusz Schauder — Juliusz Paweł Schauder (1899 1943) was a Polish mathematician of Jewish origin, known for his work in functional analysis, partial differential equation and mathematical physics.Born on September 21 1899 in Lwów, he had to fight in World War I… … Wikipedia
Théorème du point fixe de Brouwer — En 1886 Henri Poincaré démontre un résultat équivalent au théorème du point fixe de Brouwer. L énoncé exact est prouvé pour la dimension trois par Piers Bohl pour la première fois en 1904, puis par Jacques Hadamard dans le cas général en 1910.… … Wikipédia en Français
Théorèmes de point fixe — En analyse, un théorème de point fixe est un résultat qui permet d affirmer qu une fonction f admet sous certaines conditions un point fixe. Ces théorèmes se révèlent être des outils très utiles en mathématiques, principalement dans le domaine de … Wikipédia en Français
Theoremes de point fixe — Théorèmes de point fixe En analyse, un théorème de point fixe est un résultat qui permet d affirmer qu une fonction f admet sous certaines conditions un point fixe. Ces théorèmes se révèlent être des outils très utiles en mathématiques,… … Wikipédia en Français
Théorème du point fixe — Théorèmes de point fixe En analyse, un théorème de point fixe est un résultat qui permet d affirmer qu une fonction f admet sous certaines conditions un point fixe. Ces théorèmes se révèlent être des outils très utiles en mathématiques,… … Wikipédia en Français
List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… … Wikipedia
List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… … Wikipedia