Integral representation theorem for classical Wiener space
- Integral representation theorem for classical Wiener space
In mathematics, the integral representation theorem for classical Wiener space is a result in the fields of measure theory and stochastic analysis. Essentially, it shows how to decompose a function on classical Wiener space into the sum of its expected value and an Itō integral.
tatement of the theorem
Let (or simply for short) be classical Wiener space with classical Wiener measure . If , then there exists a unique Itō integrable process (i.e. in , where is canonical Brownian motion) such that
:
for -almost all .
In the above,
* is the expected value of ; and
* the integral is an Itō integral.
The proof of the integral representation theorem requires the Clark-Ocone theorem from the Malliavin calculus.
Corollary: integral representation for an arbitrary probability space
Let be a probability space. Let be a Brownian motion (i.e. a stochastic process whose law is Wiener measure). Let be the natural filtration of by the Brownian motion :::Suppose that is -measurable. Then there is a unique Itō integrable process such that:: -almost surely.
References
*Mao Xuerong. "Stochastic differential equations and their applications." Chichester: Horwood. (1997)
Wikimedia Foundation.
2010.
Look at other dictionaries:
Clark–Ocone theorem — In mathematics, the Clark–Ocone theorem (also known as the Clark–Ocone–Haussmann theorem or formula) is a theorem of stochastic analysis. It expresses the value of some function F defined on the classical Wiener space of continuous paths starting … Wikipedia
Clark-Ocone theorem — In mathematics, the Clark Ocone theorem (also known as the Clark Ocone Haussmann theorem or formula) is a theorem of stochastic analysis. It expresses the value of some function F defined on the classical Wiener space of continuous paths starting … Wikipedia
Wiener process — In mathematics, the Wiener process is a continuous time stochastic process named in honor of Norbert Wiener. It is often called Brownian motion, after Robert Brown. It is one of the best known Lévy processes (càdlàg stochastic processes with… … Wikipedia
List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… … Wikipedia
List of mathematics articles (I) — NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… … Wikipedia
Paley-Wiener integral — In mathematics, the Paley Wiener integral is a simple stochastic integral. When applied to classical Wiener space, it is less general than the Itō integral, but the two agree when they are both defined.The integral is named after its discoverers … Wikipedia
Norbert Wiener — Born November 26, 1894(1894 11 26) Columbia, Missouri, U.S … Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia
Path integral formulation — This article is about a formulation of quantum mechanics. For integrals along a path, also known as line or contour integrals, see line integral. The path integral formulation of quantum mechanics is a description of quantum theory which… … Wikipedia
List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… … Wikipedia