Identity theorem for Riemann surfaces

Identity theorem for Riemann surfaces

In mathematics, the identity theorem for Riemann surfaces is a theorem that states that a holomorphic function is completely determined by its values on any subset of its domain that has a limit point.

tatement of the theorem

Let X and Y be Riemann surfaces, let X be connected, and let f : X o Y be holomorphic. Suppose that f|_{A} = g|_{A} for some subset A subseteq X that has a limit point, where f|_{A} : A o Y denotes the restriction of f to A. Then f = g (on the whole of X).


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Riemann surface — For the Riemann surface of a subring of a field, see Zariski–Riemann space. Riemann surface for the function ƒ(z) = √z. The two horizontal axes represent the real and imaginary parts of z, while the vertical axis represents the real… …   Wikipedia

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • List of mathematics articles (I) — NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… …   Wikipedia

  • Surface — This article discusses surfaces from the point of view of topology. For other uses, see Differential geometry of surfaces, algebraic surface, and Surface (disambiguation). An open surface with X , Y , and Z contours shown. In mathematics,… …   Wikipedia

  • Analytic continuation — In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where …   Wikipedia

  • analysis — /euh nal euh sis/, n., pl. analyses / seez /. 1. the separating of any material or abstract entity into its constituent elements (opposed to synthesis). 2. this process as a method of studying the nature of something or of determining its… …   Universalium

  • Möbius transformation — Not to be confused with Möbius transform or Möbius function. In geometry, a Möbius transformation of the plane is a rational function of the form of one complex variable z; here the coefficients a, b, c, d are complex numbers satisfying ad − …   Wikipedia

  • mathematics — /math euh mat iks/, n. 1. (used with a sing. v.) the systematic treatment of magnitude, relationships between figures and forms, and relations between quantities expressed symbolically. 2. (used with a sing. or pl. v.) mathematical procedures,… …   Universalium

  • Dessin d'enfant — In mathematics, a dessin d enfant (French for a child s drawing , plural dessins d enfants, children s drawings ) is a type of graph drawing used to study Riemann surfaces and to provide combinatorial invariants for the action of the absolute… …   Wikipedia

  • Differentiable manifold — A nondifferentiable atlas of charts for the globe. The results of calculus may not be compatible between charts if the atlas is not differentiable. In the middle chart the Tropic of Cancer is a smooth curve, whereas in the first it has a sharp… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”