Infinite skew polyhedron

Infinite skew polyhedron

In geometry, infinite skew polyhedra are an extended definition of polyhedra, created by regular polygon faces, and nonplanar vertex figures.

Many are directly related to a convex uniform honeycomb, being the polygonal surface of a honeycomb with some of the cells removed. As "solids" they are called partial honeycombs and also sponges.

These polyhedra have also been called hyperbolic tessellations because they can be seen as related to hyperbolic space tessellations which also have negative angle defects. They are examples of the more general class of infinite polyhedra, or apeirohedra

Regular skew polyhedra

According to Coxeter, in 1926 John Flinders Petrie generalized the concept of regular skew polygons (nonplanar polygons) to "regular skew polyhedra".

Coxeter offered a modified Schläfli symbol {l,m|n} for these figures, with {l,m} implying the vertex figure, "m" l-gons around a vertex, and "n"-gonal holes. Their vertex figures are skew polygons, zig-zagging between two planes.

The regular skew polyhedra, reresented by {l,m|n}, follow this equation:
* 2*sin(π/l)*sin(π/m)=cos(π/n)

Coxeter and Petrie found three of these that filled 3-space:

References

* Coxeter, "Regular Polytopes", Third edition, (1973), Dover edition, ISBN 0-486-61480-8
* "Kaleidoscopes: Selected Writings of H.S.M. Coxeter", editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
** (Paper 2) H.S.M. Coxeter, "The Regular Sponges, or Skew Polyhedra", "Scripta Mathematica" 6 (1939) 240-244.
* Coxeter, "The Beauty of Geometry: Twelve Essays", Dover Publications, 1999, ISBN 0486409198 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues)
** Coxeter, H. S. M. "Regular Skew Polyhedra in Three and Four Dimensions." Proc. London Math. Soc. 43, 33-62, 1937.
* Garner, C. W. L. "Regular Skew Polyhedra in Hyperbolic Three-Space." Canad. J. Math. 19, 1179-1186, 1967.
* J. R. Gott, "Pseudopolyhedrons", American Mathematical Monthly, Vol 74, p. 497-504, 1967.
* A. F. Wells, "Three-Dimensional Nets and Polyhedra", Wiley, 1977.

External links

*
*
*GlossaryForHyperspace | anchor=Skew | title=Skew polytope
* [http://www.uwgb.edu/dutchs/symmetry/hyperbol.htm "Hyperbolic" Tessellations]
* [http://www.superliminal.com/geometry/infinite/infinite.htm Infinite Regular Polyhedra] [http://www.superliminal.com/geometry/ogeometry.htm]
* [http://Polyhedra.Doskey.com/PartialHoneycombs.html Infinite Repeating Polyhedra - Partial Honeycombs in 3-Space]
* [http://www.math.neu.edu/~schulte/symchapter.pdf 18 SYMMETRY OF POLYTOPES AND POLYHEDRA, Egon Schulte: 18.3 REGULAR SKEW POLYHEDRA]
* [http://www.3doro.de/infini-poly.htm Infinite Polyhedra, T.E. Dorozinski ]


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Regular skew polyhedron — In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedron which include the possibility of nonplanar faces or vertex figures.These polyhedra have two forms infinite polyhedra that span 3 space, and finite… …   Wikipedia

  • Polyhedron — Polyhedra redirects here. For the relational database system, see Polyhedra DBMS. For the game magazine, see Polyhedron (magazine). For the scientific journal, see Polyhedron (journal). Some Polyhedra Dodecahedron (Regular polyhedron) …   Wikipedia

  • List of mathematics articles (I) — NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… …   Wikipedia

  • John Richard Gott — III, né en 1947 à Louisville (Kentucky, USA) est un professeur d astrophysique à l université de Princeton. Il est spécialement renommé pour avoir développé et soutenu deux théories cosmologiques aux relents de science fiction : le voyage… …   Wikipédia en Français

  • Polyedre oblique infini — Polyèdre oblique infini En géométrie, les polyèdres obliques infinis sont une définition étendue des polyèdres, créés par des faces polygonales régulières, et des figures de sommet non planaires. Beaucoup sont directement reliés aux nids d… …   Wikipédia en Français

  • Polyèdre oblique infini — En géométrie, les polyèdres obliques infinis sont une définition étendue des polyèdres, créés par des faces polygonales régulières, et des figures de sommet non planaires. Beaucoup sont directement reliés aux nids d abeille convexes uniformes,… …   Wikipédia en Français

  • List of regular polytopes — This page lists the regular polytopes in Euclidean, spherical and hyperbolic spaces.The Schläfli symbol notation describes every regular polytope, and is used widely below as a compact reference name for each.The regular polytopes are grouped by… …   Wikipedia

  • Regular polytope — In mathematics, a regular polytope is a polytope whose symmetry is transitive on its flags, thus giving it the highest degree of symmetry. All its elements or j faces (for all 0≤ j ≤ n , where n is the dimension of the polytope) cells, faces and… …   Wikipedia

  • Polygon — For other uses, see Polygon (disambiguation). Some polygons of different kinds In geometry a polygon (   …   Wikipedia

  • Apeirohedron — An apeirohedron is a polyhedron having infinitely many faces. Like an ordinary polyhedron it forms a surface with no border. But where an ordinary polyhedral surface has no border because it folds round to close back on itself, an apeirohedron… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”