- Antihydrogen
Antihydrogen is the
antimatter counterpart ofhydrogen . Whereas the common hydrogenatom is composed of anelectron andproton , the antihydrogen atom is made up of apositron andantiproton .Its (proposed)chemical symbol is H, that is, H with an overbar (pronEng|ˌeɪtʃ ˈbɑr "aitch-bar").Antihydrogen characteristics
According to the
CPT theorem of particle physics, antihydrogen atoms should have many of the characteristics regular hydrogen atoms have, i.e. they should have the samemass ,magnetic moment , and transition frequencies (seeAtomic spectroscopy ) between its atomicquantum states . Excited antihydrogen atoms are for example expected to glow with the same color as that of regular hydrogen. Antihydrogen atoms should be attracted to other matter or antimatter gravitationally with a force of the same magnitude as ordinary hydrogen atoms would experience. This would not be true if antimatter has negativegravitational mass , which is considered highly unlikely, though not yet empirically disproven.When antihydrogen atoms come into contact with ordinary matter, they quickly annihilate each other and produce energy in the form of
gamma rays and high-energy particles calledpion s. These pions in turn quickly decay into other particles calledmuons ,neutrinos ,positrons , andelectrons , and these particles rapidly dissipate. If antihydrogen atoms were to be suspended in a perfect vacuum, however, they should survive indefinitely.Production
In 1995, the
CERN laboratory inGeneva first produced antihydrogen by shooting antiprotons, which were produced in aparticle accelerator , atxenon clusters. When an antiproton gets close to a xenon nucleus, an electron-positron-pair can be produced, and with some probability the positron will be captured by the antiproton to form antihydrogen. The probability for producing antihydrogen from one antiproton was only about 10-19, so this method is not well suited for the production of substantial amounts of antihydrogen.In recent experiments carried out by the
ATRAP andATHENA collaborations at CERN, positrons from asodium radioactive source and antiprotons were brought together in a magneticPenning trap , where synthesis took place at a typical rate of 100 antihydrogen atoms per second. Antihydrogen was first produced by these two collaborations in 2002, and by 2004 perhaps a hundred thousand antihydrogen atoms were produced in this way.The antihydrogen atoms synthesized so far have a very high temperature (a few thousand
kelvin s); they will hit the walls of the experimental apparatus as a consequence and annihilate. A potential solution to this problem would be to produce antihydrogen atoms at such a low temperature (perhaps a fraction of a kelvin) that they can be captured in amagnetic trap .Simultaneous trapping of antiprotons and antielectrons was reportedcite journal
title=The ingredients of cold antihydrogen: Simultaneous confinement of antiprotons and positrons at 4 K
author=G. Gabrielse
coauthors=D. S. Hall, T. Roach, P. Yesley, A. Khabbaz, J. Estrada, C. Heimann and H. Kalinowsky
journal=Physics Letters B
volume=455
issue= 1-4
year=1999
doi=10.1016/S0370-2693(99)00453-0
url=http://www.freepatentsonline.com/6163587.html
pages=311–315] and the cooling is achievedcite journal
author=G. Andresen
coauthors=at al.
title=Antimatter Plasmas in a Multipole Trap for Antihydrogen
journal=PRL
volume= 98
pages= 023402
year=2007
url=http://link.aps.org/abstract/PRL/v98/e023402
doi=10.1103/PhysRevLett.98.023402] ; there are patents on the way of production of antihydrogencite journal
title = Process for the production of antihydrogen
journal=US patent
volume= 6163587
author = Hessels Eric Arthur
coauthors=
year = 2000
month = December
url = http://www.freepatentsonline.com/6163587.html] . In spite of this progress, the confinement time is not yet long, and the antimatter is not yet available at the market.Antimatter atoms such as antideuterium (D),
antitritium (T), andantihelium (He) are much more difficult to produce than antihydrogen. Among these, only antideuterium nuclei have been produced so far, and these have such very high velocities that synthesis of antideuterium atoms may still be many decades ahead.Natural occurrence
Today, no conclusive spectral signature for the presence of antihydrogen could be reported, since measuring the spectrum of antihydrogen, especially the 1S-2S interval, is exactly the goal of these CERN collaborations.
ee also
*
Gravitational interaction of antimatter References
Wikimedia Foundation. 2010.