Cahn–Ingold–Prelog priority rules

Cahn–Ingold–Prelog priority rules

The CahnIngoldPrelog priority rules, CIP system or CIP conventions are a set of rules used in organic chemistry to name the stereoisomers of a molecule. A molecule may contain any number of stereocenters and any number of double bonds, and each gives rise to two possible configurations. The purpose of the CIP system is to assign an to each stereocenter and an E or Z descriptor to each double bond so that the configuration of the entire molecule can be specified uniquely by including the descriptors in its systematic name.

The Cahn–Ingold–Prelog rules are distinctly different from those of other naming conventions, such as general IUPAC nomenclature, since they are designed for the specific task of naming stereoisomers rather than the general classification and description of compounds.

The steps for naming molecules using the CIP system are often presented as:

# Identification of stereocenters and double bonds
# Assignment of priorities to the groups attached to each stereocenter or double-bonded atom
# Assignment of R/S and E/Z descriptors

Assignment of priorities

and E/Z descriptors are assigned by reference to a priority ranking of the groups attached to each stereocenter (or double-bonded atom, henceforth). The procedure for assigning these priorities (also known as the sequence rule) is the heart of the CIP system.

Two groups are compared first by atomic number of the atoms directly attached to the stereocenter; the group having the atom of higher atomic number receives higher priority. If there is a tie, a list is made for each group of the atoms bonded to the one directly attached to the stereocenter, i.e., the atoms at distance 2 from the stereocenter. Each list is arranged in order of decreasing atomic number. Then the lists are compared atom by atom; at the earliest difference, the group containing the atom of higher atomic number receives higher priority. If there is still a tie, each atom in each of the two lists is replaced with a sub-list of the other atoms bonded to it (at distance 3 from the stereocenter), the sub-lists are arranged in decreasing order of atomic number, and the entire structure is again compared atom by atom. This process is repeated, each time with atoms one bond farther from the stereocenter, until the tie is broken.

Some examples will help to illustrate the subtleties of this procedure:
* -OH > -CH3. The -OH groups directly attached to carbon have a higher atomic number (8) than the -CH3 groups directly attached to carbon (6).
* -CH(OH)CH3 > -CH2OH. The directly attached atoms are both carbon, but the distance-2 lists differ: they are (O, C, H) and (O, H, H), respectively. The earliest difference is in the second slot, where the carbon atom of -CH(OH)CH3 takes priority over the hydrogen atom of -CH2OH.
* -CH(OCH3)CH3 > -CH(OH)CH2OH. The distance-2 lists are both (O, C, H), a tie. Replacing each atom with a list of its neighbors, we obtain the distance-3 lists: ((C), (H, H, H), ( )) and ((H), (O, H, H), ( )). The earliest difference is in the atom bonded to the distance-2 oxygen: -CH(OCH3)CH3's carbon outranks -CH(OH)CH2OH's hydrogen. It is irrelevant that the oxygen in the second list outranks the corresponding hydrogen in the first list.
* -CH(CH2F)OCH3 > -CH(CH3)OCH2F. The distance-3 fluorine in -CH(CH2F)OCH3 outranks the hydrogens in -CH(CH3)OCH2F. One might reason that the distance-4 fluorine in -CH(CH3)OCH2F outranks the hydrogens in -CH(CH2F)OCH3 at an earlier point in the list once atoms are arranged by decreasing atomic number, but this is irrelevant because the tie is already broken at distance 3.


If two groups differ only in isotopes, mass numbers are used at each step to break ties in atomic number.

* -CDH2 > -CH3. The distance-2 lists are (D, H, H) and (H, H, H); the deuterium in -CDH2 outranks the hydrogen in -CH3.
* -CH(OD)CH3 > -CH(OH)CTH2. The distance-2 lists are both (O, C, H), and the distance-3 lists are ((D), (H, H, H), ( )) and ((H), (T, H, H), ( )); the deuterium outranks the hydrogen.
* -CH2CH2CH3 > -CDHCH3. There is a difference in elements (not just isotopes), so the groups are compared solely by atomic number, and -CH2CH2CH3 takes priority at distance 3. It is irrelevant that -CDHCH3 has a deuterium at distance 2 where -CH2CH2CH3 has a hydrogen.

Double and triple bonds

If an atom "A" is double-bonded to an atom "B", "A" is treated as being singly bonded to two atoms: "B" and a ghost atom that has the same atomic number as "B" but is not attached to anything except "A". In turn, when "B" is replaced with a list of attached atoms, "A" itself is excluded in accordance with the general principle of not doubling back along a bond that has just been followed, but a ghost atom for "A" is included so that the double bond is properly represented from both ends.

* -CH=O > -CH2OH. The distance-2 lists are (O, ghost O, H) and (O, H, H); the ghost oxygen outranks the hydrogen.
* -CH(OCH3)2 > -CH=O. The distance-2 lists are (O, O, H) and (O, ghost O, H). This is a tie, but at distance 3, nothing else is attached to the ghost oxygen, so it loses to the second oxygen of -CH(OCH3)2; the lists are ((C), (C), ( )) and ((ghost C), ( ), ( )).
* -CH=CH2 > -CH(CH3)2. The distance-2 lists are (C, ghost C, H) and (C, C, H), a tie. However, at distance 3, the lists are ((ghost C, H, H), ( ), ( )) and ((H, H, H), (H, H, H), ( )); the ghost carbon representing the "reverse direction" of -CH=CH2's double bond outranks -CH(CH3)2's hydrogens.

A triple bond is handled the same way except that "A" and "B" each carry two ghost atoms instead of one.

It needs to be mentioned also that two substituents on an atom may, in rare cases, be geometrical isomers. Consider for example the compound (3"Z",6"E")-3,5,7-trimethylnona-3,6-diene. It soon becomes clear that the 5-carbon is chiral because it has four different substituents. Thus it is necessary to introduce the rule that the Z-isomer has higher priority than the E-isomer.


To handle a molecule containing one or more cycles, one must first expand it into a tree (called a hierarchical digraph by the authors) by traversing bonds in all possible paths starting at the stereocenter. When the traversal encounters an atom through which the current path has already passed, a ghost atom is generated in order to keep the tree finite. A single atom of the original molecule may appear in many places (some as ghosts, some not) in the tree.

Assigning descriptors

Stereocenters: R/S

After the substituents of a stereocenter have been assigned their priorities, the molecule is so oriented in space that the group with the lowest priority is pointed away from the observer. If the substituents are numbered from 1 (highest priority) to 4 (lowest priority), then the sense of rotation of a curve passing through 1, 2 and 3 distinguishes the stereoisomers. A center with a clockwise sense of rotation is an "R" or "rectus" center and a center with a counterclockwise sense of rotation is an "S" or "sinister" center. The names are derived from the Latin for right and left, respectively.

It is possible in rare cases that two substituents on an atom differ only in their absolute configuration ("R" or "S"). If the relative priorities of these substituents need to be established, "R" takes priority over "S". When this happens, the descriptor of the stereocenter is a lowercase letter ("r" or "s") instead of the uppercase letter normally used.

Double bonds: E/Z

For alkenes and similar double bonded molecules, the same prioritizing process is followed for the substituents. In this case, it is the placing of the two highest priority substituents with respect to the double bond which matters. If both high priority substituents are on the same side of the double bond, ie. in the cis configuration, then the stereoisomer is assigned a "Z" or "Zusammen configuration". If, by contrast they are in a trans configuration, then the stereoisomer is assigned an "E" or "Entgegen configuration". In this case the identifying letters are derived from German for 'together' and 'in opposition to', respectively.

Multiple descriptors in one molecule

It is important to note that there can be more than one of each type of system requiring assignment in a particular molecule. For example, ephedrine exists in both 1-("R"), 2-("S") and 1-("S"), 2-("R") forms. A compound with the same formula also exists in 1-("R"), 2-("R") and 1-("S"), 2-("S"). Said stereoisomers are not ephedrine, but pseudoephedrine. They are chemically distinct from ephedrine, with only the three dimensional configuration in space, as notated by the Cahn–Ingold–Prelog rules to distinguish them in systematic nomenclature (both are 2-methylamino-1-phenyl-1-propanol in systematic nomenclature). The ephedrine enantiomers are referred to as being diastereoisomers of the pseudoephedrine enantiomers. In general where there are n stereocenters, there will be 2n stereoisomers possible. However, often there are situations where some of these stereoisomers are superposable, reducing the number of different molecules which actually exist.


is viewed from the re face. Hydride addition as in a reduction process from this side will form the S-enantiomer and attack from the opposite Si face will give the R-enantiomer.


The following two papers define the CIP system. The papers provide a number of additional rules beyond the main points covered above, such as describing less common forms of stereoisomerism (such as chiral axes and planes), and resolving more difficult priority assignments. For example, note that the above rules fail to generate stereo descriptors for compounds such as (1"s",2"s",3"s")-1,2,3-trichlorocyclopropane (in which all three chlorine atoms are on the same side of the ring).

* Cite journal | author = Robert Sidney Cahn; Christopher Kelk Ingold; Vladimir Prelog
title = Specification of Molecular Chirality
journal = Angewandte Chemie International Edition
volume = 5
issue = 4
pages = 385–415
year = 1966
doi = 10.1002/anie.196603851

* cite journal | author = Vladimir Prelog | Günter Helmchen
title = Basic Principles of the CIP-System and Proposals for a Revision
journal = Angewandte Chemie International Edition
volume = 21
issue = 8
pages = 567–583
year = 1982
doi = 10.1002/anie.198205671

Other references:

* J. March. "Advanced Organic Chemistry" 3Ed. ISBN 0-471-85472-7
* IUPAC Rules for the Nomenclature of Organic Chemistry. Section E, Stereochemistry (Recommendations 1974). []

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Cahn-Ingold-Prelog sequence rules — in chemistry, a set of rules used to determine the absolute configuration of chiral molecules by assigning priority rankings to the atoms attached to a chiral center. Atoms directly attached to the chiral center are ranked in order of decreasing… …   Medical dictionary

  • Christopher Kelk Ingold — Sir Christopher Kelk Ingold Born 28 October 1893(1893 10 28) London, United Kingdom Died 8 December 1970(19 …   Wikipedia

  • Robert Sidney Cahn — (June 9 1899 June 15 1981) was a British chemist, best known for his contributions to chemical nomenclature and stereochemistry, particularly by the Cahn–Ingold–Prelog priority rules, which he proposed in 1956 with Christopher Kelk Ingold and… …   Wikipedia

  • IUPAC nomenclature of organic chemistry — The IUPAC nomenclature of organic chemistry is a systematic method of naming organic chemical compounds as recommended[1] by the International Union of Pure and Applied Chemistry (IUPAC). Ideally, every possible organic compound should have a… …   Wikipedia

  • Polyhedral symbol — The polyhedral symbol is sometimes used in coordination chemistry to indicate the approximate geometry of the coordinating atoms around the central atom. One or more italicised letters indicate the geometry, e.g. TP 3 which is followed by a… …   Wikipedia

  • Chirality (chemistry) — L form redirects here. For the bacterial strains, see L form bacteria. Two enantiomers of a generic amino acid …   Wikipedia

  • Cis–trans isomerism — Cis but 2 ene Trans but 2 ene In organic che …   Wikipedia

  • Prochiral — In chemistry, prochiral molecules can be converted from achiral to chiral in a single step.cite book|title=Organic Chemistry|author=John McMurry|edition=6ed|publisher=Brooks/Cole|pages=301 303] If two identical substituents are attached to an sp… …   Wikipedia

  • Stereochemistry — Stereochemistry, a subdiscipline of chemistry, involves the study of the relative spatial arrangement of atoms within molecules. An important branch of stereochemistry is the study of chiral molecules [JerryMarch] . Stereochemistry is a hugely… …   Wikipedia

  • Stereocenter — A stereocenter or stereogenic center is an atom, bearing groups such that an interchanging of any two groups leads to a stereoisomer.[1] A chirality center is a stereocenter consisting of an atom holding a set of ligands (atoms or groups of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”