Recommender system

Recommender system

Recommender systems form a specific type of information filtering (IF) technique that attempts to present information items (movies, music, books, news, images, web pages) that are likely of interest to the user. Typically, a recommender system compares the user's profile to some reference characteristics. These characteristics may be from the information item (the content-based approach) or the user's social environment (the collaborative filtering approach).

Overview

When building the user's profile a distinction is made between explicit and implicit forms of data collection.

Examples of explicit data collection include the following:

*Asking a user to rate an item on a sliding scale.
*Asking a user to rank a collection of items from favorite to least favorite.
*Presenting two items to a user and asking him/her to choose the best one.
*Asking a user to create a list of items that he/she likes.

Examples of implicit data collection include the following:
*Observing the items that a user views in an online store.
*Analyzing item/user viewing times [citation |last=Parsons |first=J. |last2=Ralph |first2=P. |last3=Gallagher |first3=K. |date=July 2004 |month=July |year=2004 |title=Using viewing time to infer user preference in recommender systems. |publisher=AAAI Workshop in Semantic Web Personalization, San Jose, California.]
*Keeping a record of the items that a user purchases online.
*Obtaining a list of items that a user has listened to or watched on his/her computer.
*Analyzing the user's social network and discovering similar likes and dislikes

The recommender system compares the collected data to similar data collected from others and calculates a list of recommended items for the user. Several commercial and non-commercial examples are listed in the article on collaborative filtering systems.Adomavicius provides an overview of recommender systems. [citation |last=Adomavicius |first=G. |last2=Tuzhilin |first2=A. |url=http://portal.acm.org/citation.cfm?id=1070611.1070751 |title=Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions |journal=IEEE Transactions on Knowledge and Data Engineering |volume=17 |issue=6 |date=June 2005 |month=June |year=2005 |pages=734749 |doi=10.1109/TKDE.2005.99 |issn=1041-4347.] Herlocker provides an overview of evaluation techniques for recommender systems. [citation |last=Herlocker |first=J. L. |last2=Konstan |first2=J. A. |last3=Terveen |first3=L. G. |last4=Riedl |first4=J. T. |date=January 2004 |month=January |year=2004 |url=http://portal.acm.org/citation.cfm?id=963772 |title=Evaluating collaborative filtering recommender systems |journal=ACM Trans. Inf. Syst. |volume=22 |issue=1 |pages=553 |doi=10.1145/963770.963772 |issn=1046-8188.]

More recently, a successful recommender system has been introduced for bricks and mortar superstores based upon statistical inference [Quatse, Jesse and Najmi, Amir (2007) "Empirical Bayesian Targeting," Proceedings, WORLDCOMP'07, World Congress in Computer Science, Computer Engineering, and Applied Computing.] as opposed to the Collaborative Filtering techniques of eCommerce. Redemption rates, or "hit rates," are much higher averaging as much as 45% in chain grocery stores.

Recommender systems are a useful alternative to search algorithms since they help users discover items they might not have found by themselves. Interestingly enough, recommender systems are often implemented using search engines indexing non-traditional data.

Recommender systems are also sometimes known colloquially as "Gilligans".

Algorithms

One of the most commonly used algorithms in recommender systems is Nearest Neighborhood approach. [citation |last=Sarwar |first=B. |last2=Karypis |first2=G. |last3=Konstan |first3=J. |last4=Riedl |first4=J. |year=2000 |url=http://glaros.dtc.umn.edu/gkhome/node/122 |title=Application of Dimensionality Reduction in Recommender System A Case Study.] . In a social network, a particular user's neighborhood with similar taste or interest can be found by calculating Pearson Correlation, by collecting the preference data of top-N nearest neighbors of the particular user, the user's preference can be predicted by calculating the data using certain techniques.

Examples

* [http://www.aggregateknowledge.com/ Aggregate Knowledge] (recommendations and discovery)
* Baynote (recommendation web service)
* [http://www.choicestream.com ChoiceStream] (recommendation service provider)
* [http://www.clicktorch.com Clicktorch] Intelligent Product and Content Recommendation System
* Collarity (media recommendation platform)
* [http://www.configworks.com ConfigWorks] (interactive selling solutions)
* [http://www.criteo.com/ Criteo] (recommendation technology)
* [http://www.criticker.com/ Criticker] (film recommendation engine)
* Daily Me (news recommendation system (hypothetical))
* [http://foodio54.com Foodio54] (restaurant recommender service)
* [http://www.freshnotes.com/ FreshNotes] (recommendation engine)
* [http://www.heeii.com Heeii] (recommendation plugin)
* [http://www.igodigital.com/ iGoDigital] (recommendation engine)
* inSuggest (recommendation engine)
* iLike (music service)
* Last.fm (music service)
* [http://loomia.com/ Loomia] (Social and Personalized Recommendations For Media, Content and Retail Sites)
* MeeMix (personalized music service)
* [http://business.mufin.com mufin] (provider of semantic audio recommendation technologies)
* MyStrands (developer of social recommendation technologies)
* Pandora (music service)
* [http://www.photoree.com Photoree] (image recommender system)
* [http://www.prudsys.com/Software/Komponenten/RecommendationEngine/ prudsys RE] (recommendation system)
* Slacker (music service)
* StumbleUpon (web discovery service)
* StyleFeeder (personalized shopping search)
* [http://www.tastehood.com/ Tastehood] (recommendation engine for movies, music, books and more)
* [http://www.tastekid.com/ Taste Kid] (music, films and books recommendation engine)
* [http://www.tastevine.com/ TasteVine] (wine)
* Zemanta (authoring-time suggestions service)
* [http://www.imhonet.ru/ IMHONET] (1st russian language recommendation service)

ee also

* Cold start
* Collaborative filtering
* Collective intelligence
* Personalized marketing
* Preference elicitation
* Product Finders
* The Long Tail

References

External links

* [http://www.clicktorch.com Clicktorch] Intelligent Product and Content Recommendation System)
* [http://www.photoree.com Photoree] (image recommendation system)
* [http://www.commendo.at commendo] (large scale recommender systems)
* [http://www.prudsys.com/Software/Komponenten/RecommendationEngine/1204804625/ prudsys] (recommender systems based on reinforcement learning technologies)
* [http://like-i-like.org Like-I-Like.org] (movie recommendation web service)
* [http://scripts.mit.edu/~cci/wiki/index.php?title=Computer_supported_collaborative_work_perspective_on_collective_intelligence MIT-CCI wiki on "Computer supported collaborative work perspective on collective intelligence"]
* [http://www.andreas-ittner.de/index_rs.html Collection of research papers]
* [http://search.barnesandnoble.com/booksearch/isbnInquiry.asp?z=y&EAN=9780446530033&itm=1 Word of Mouth: The Marketing Power of Collaborative Filtering]
* [http://www.cs.utexas.edu/users/ml/publication/paper.cgi?paper=cbcf-aaai-02.ps.gz Content-Boosted Collaborative Filtering for Improved Recommendations. Prem Melville, Raymond J. Mooney, and Ramadass Nagarajan]
*
* [http://www.deitel.com/ResourceCenters/Web20/RecommenderSystems/RecommenderSystemsandCollaborativeFiltering/tabid/1318/Default.aspx Recommended Systems Resource Center]
* [http://www.localina.com Localina (location recommendation system)]
* [http://www.aggregateknowledge.com/des_riedl.html Interview: Recommendations 2.0 by John Riedl, Ph.D.]
* [http://www.andreas-ittner.de/recommender-literatur/17-quellen-recommender-systeme/10-quellen-recommender-systeme.html Web's largest collection of scientific literatur about recommender systems]
* [http://www.media-choice.com MediaChoice] (Patented Recommendation System)

Research Groups

* [http://www.grouplens.org/ GroupLens]
* [http://dbis.informatik.uni-freiburg.de/index.php?project=2nd-Gen-RS IFI DBIS Next Generation Recommender Systems]
* [http://www.em.uni-karlsruhe.de/research/projects/reckvk/index.php?language=en&id=Summary IISM]
* [http://users.ecs.soton.ac.uk/sem99r/publications.html Univ. of Southampton IAM Group]
* [http://eecs.oregonstate.edu/iis/CoFE/ CoFE]
* [http://www.telin.nl/index.cfm?project=Duine&language=en Duine]
* [http://www.cs.utexas.edu/users/mooney/libra/ LIBRA]
* [http://www.uni-klu.ac.at/tewi/inf/ainf/isbi/index.html Intelligent Systems and Business Informatics research group at University Klagenfurt, Austria]
* [http://en.wikipedia.org/wiki/Netflix_prize Netflix prize]
* [http://www.unifr.ch/econophysics/ Univ. of Fribourg Statistical Physics Group]

[http://recsys.acm.org/ ACM Recommender Systems Series]

* [http://recsys.acm.org/ RecSys 2008]
* RecSys 2007: [http://recsys.acm.org/2007/ home page] , [http://portal.acm.org/toc.cfm?id=1297231&type=proceeding&coll=ACM&dl=ACM&CFID=5530539&CFTOKEN=21609831 proceedings]
* [http://www.mystrands.com/corp/summerschool06.vm Recommenders06: Summer School on The Present and Future of Recommender Systems]

Journal Special Issues

* [http://tweb.acm.org/RecSysSpecialIssue.html ACM Transactions on the Web Special issue on Recommenders on the Web]
* [http://www.configworks.com/AICOM/ AI Communications Special issue on Recommender Systems: call for papers]
* [http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/mags/ex/&toc=comp/mags/ex/2007/03/x3toc.xml IEEE Intelligent Systems Special Issue on Recommender Systems, Vol. 22(3), 2007]
* [http://portal.acm.org/toc.cfm?id=1278152 International Journal of Electronic Commerce Special Issue on Recommender Systems, Volume 11, Number 2 (Winter 2006-07)]
* [http://portal.acm.org/citation.cfm?id=1096737.1096738 ACM Transactions on Computer-Human Interaction (TOCHI) Special Section on Recommender Systems Volume 12, Issue 3 (September 2005)]
* [http://portal.acm.org/toc.cfm?id=963770 ACM Transactions on Information Systems (TOIS) Special Issue on Recommender Systems, Volume 22, Issue 1 (January 2004)]
* [http://tourism.wu-wien.ac.at/Jitt/ Journal of Information Technology and Tourism Special issue on Recommender Systems, Volume 6, Number 3 (2003)]
* [http://portal.acm.org/citation.cfm?id=245121 Communications of the ACM Special issue on Recommender Systems, Volume 40, Issue 3 (March 1997)]

Workshops

* [http://www.wprrs08.fit.qut.edu.au/ WI'08 Workshop on Web Personalization, Reputation and Recommender Systems]
* [http://www.dirf.org/diwt2008/workshop2.asp ICADIWT 2008 - First International Workshop on Recommender Systems and Personalized Retrieval]
* [http://proserver3-iwas.uni-klu.ac.at/ECAI08-Recommender-Workshop/ ECAI'08 - Workshop on Recommender Systems]
* [http://kater.uni-koblenz.de/~openconf/recoll.2008/ ReColl'08 - International Workshop on Recommendation and Collaboration]
* [http://forwarding-iwas.uni-klu.ac.at/AAAI07-WS-Recommender-Systems/ AAAI'07 Workshop on Recommender Systems in e-Commerce]
* [http://www.wprs07.fit.qut.edu.au/ WI'07 Workshop on Web Personalization and Recommender Systems]
* [http://proserver3-iwas.uni-klu.ac.at/ECAI06-Recommender-Workshop/ ECAI 2006 Workshop on Recommender Systems]
* [http://web.engr.oregonstate.edu/~herlock/rsw2001/ ACM SIGIR 2001 Workshop on Recommender Systems]
* [http://www.cs.umbc.edu/~ian/sigir99-rec/ ACM SIGIR '99 Workshop on Recommender Systems]
* [http://www.patrickbaudisch.com/interactingwithrecommendersystems/ CHI' 99 Workshop Interacting with Recommender Systems ]

Further reading

*Hangartner, Rick, [http://www.msearchgroove.com/2007/12/17/guest-column-what-is-the-recommender-industry/ "What is the Recommender Industry?"] , MSearchGroove, December 17, 2007.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • recommender system — /rɛkəˈmɛndə sɪstəm/ (say rekuh menduh sistuhm) noun Internet a system by which products, as movies, books, events, sports activities, etc., are matched against an existing user profile created by recording previous like purchases, or by asking… …  

  • Information filtering system — An Information filtering system is a system that removes redundant or unwanted information from an information stream using (semi)automated or computerized methods prior to presentation to a human user. Its main goal is the management of the… …   Wikipedia

  • Music Recommendation System for iTunes — The Music Recommendation System for iTunes is a recommender system that uses collaborative filtering to generate music recommendations. It is computer software that serves a similar purpose as iRate Radio, but functions differently in that it… …   Wikipedia

  • Recommending system — Das Global Network of Dreams (GNOD) ist eine Web Entwicklung für eine inhaltsorientierte Grafische Benutzeroberfläche von Datenbanken in Form einer selbstorganisierenden Karte. Bezogen auf die Datenbankinhalte Bücher und Film ist GNOD für den… …   Deutsch Wikipedia

  • Cold start — For the process of restarting a computer without performing any shut down procedure, see hard reboot. Cold start is a potential problem in computer based information systems which involve a degree of automated data modelling. Specifically, it… …   Wikipedia

  • Slope One — Collaborative filtering is a technique used by recommender systems to combine different users opinions and tastes in order to achieve personalized recommendations. There are at least two classes of collaborative filtering: user based techniques… …   Wikipedia

  • Sistema recomendador — Los sistemas de recomendación forman parte de un tipo especifico de técnica de filtro de información, los cuales presentan distintos tipos de temas o items de información (películas, música, libros, noticias, imágenes, páginas web, etc.) que son… …   Wikipedia Español

  • Empfehlungsdienst — Schematische Darstellung eines Recommendersystems Ein Empfehlungsdienst (englisch Recommender System) ist ein automatisches Verfahren, das ausgehend von vorhandenen Webseiten oder anderen Objekten ähnliche Objekte ermittelt und empfiehlt. Zur… …   Deutsch Wikipedia

  • Mperience — s.r.l. http://www.mperience.com/images/logotop.png Type Private Founded December 2009 Headquarters Rome, Italy Key peopl …   Wikipedia

  • Recommendation Engine — Schematische Darstellung eines Recommendersystems Ein Empfehlungsdienst (englisch Recommender System) ist ein automatisches Verfahren, das ausgehend von vorhandenen Webseiten oder anderen Objekten ähnliche Objekte ermittelt und empfiehlt. Zur… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
https://en-academic.com/dic.nsf/enwiki/321670 Do a right-click on the link above
and select “Copy Link”