Isohedral figure

Isohedral figure

In geometry, a polytope (a polyhedron or a polychoron for example) or tiling is isohedral or face-transitive when all its faces are the same. More specifically, all faces must be not merely congruent but must be "transitive", i.e. must lie within the same "symmetry orbit".

Isohedral polyhedra are called isohedra. They can be described by their face configuration. A form that is isohedral and has regular vertices is also edge-transitive (isotoxal) and is said to be a quasiregular dual: some theorists regard these figures as truly quasiregular because they share the same symmetries, but this is not generally accepted.

A polyhedron which is isohedral has a dual polyhedron that is vertex-transitive (isogonal). The Catalan solids, the bipyramids and the trapezohedra are all isohedral. They are the duals of the isogonal Archimedean solids, prisms and antiprisms, respectively. The Platonic solids, which are either self-dual or dual with another Platonic solid, are vertex, edge, and face-transitive (isogonal, isotoxal, and isohedral). A polyhedron which is isohedral and isogonal but not isotoxal is said to be noble.

Convex isohedral polyhedra are the shapes that will make fair dice.

Related terms

A cell-transitive or isochoric figure is an n-polytope (n>3) or honeycomb that has its cells are congruent and transitive with each other.

A facet-transitive or isotopic figure is a "n"-dimensional polytopes or honeycomb, with its facets ("(n-1)"-faces) congruent and transitive. The dual of an "isotope" is an isogonal polytope. By definition, this isotopic property is common to the duals of the uniform polytopes.
*An isotopic 2-dimensional figure is "isotoxal" (edge-transitive).
*An isotopic 3-dimensional figure is "isohedral" (face-transitive).
*An isotopic 4-dimensional figure is "isochoric" (cell-transitive).

See also

*Edge-transitive
*Anisohedral tiling

References

* Peter R. Cromwell, "Polyhedra", Cambridge University Press 1997, ISBN 9-521-55432-2, p.367 Transitivity

External links

*
*MathWorld | urlname=IsohedralTiling | title=Isohedral tiling


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Figure isogonale — Pour les articles homonymes, voir Isogonal. Exemple : Un cuboctaèdre tronqué isogonal, construit à partir d un cube aux arêtes chanfreinées et aux sommets tronqués …   Wikipédia en Français

  • Isogonal figure — In geometry, a polytope (a polygon, polyhedron or tiling, for example) is isogonal or vertex transitive if all its vertices are the same. That is, each vertex is surrounded by the same kinds of face in the same order, and with the same angles… …   Wikipedia

  • Isotoxal figure — This article is about geometry. For edge transitivity in graph theory, see edge transitive graph. In geometry, a polytope (a polygon, polyhedron or tiling, for example) is isotoxal or edge transitive if its symmetries act transitively on its… …   Wikipedia

  • Polyèdre — Un polyèdre est une forme géométrique à trois dimensions ayant des faces planes polygonales qui se rencontrent selon des segments de droite qu on appelle arêtes. Le mot « polyèdre »[1] provient du grec classique πολύεδρον (polyedron)… …   Wikipédia en Français

  • Star polyhedron — In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star like visual quality.There are two general kinds of star polyhedron: *Polyhedra which self intersect in a repetitive way. *Concave… …   Wikipedia

  • List of mathematics articles (I) — NOTOC Ia IA automorphism ICER Icosagon Icosahedral 120 cell Icosahedral prism Icosahedral symmetry Icosahedron Icosian Calculus Icosian game Icosidodecadodecahedron Icosidodecahedron Icositetrachoric honeycomb Icositruncated dodecadodecahedron… …   Wikipedia

  • Zonoèdre — Un zonoèdre est un polyèdre convexe où chaque face est un polygone avec un centre de symétrie ou, de manière équivalente, une symétrie avec des rotations à 180°. Tout zonoèdre peut être décrit de manière équivalente comme la somme de Minkowski d… …   Wikipédia en Français

  • Composé polyédrique — Un composé polyédrique est un polyèdre qui est lui même composé de plusieurs autres polyèdres partageant un centre commun, l analogue tridimensionnel des composés polygonaux (en) tels que l hexagramme. Les sommets voisins d un composé… …   Wikipédia en Français

  • Nid d'abeille (géométrie) — Pour Nid d’abeille, voir Nid d abeille (homonymie). En géométrie, un nid d’abeille est le nom donné pour un pavage remplissant l’espace par des polyèdres, de la même manière qu’un pavage remplit un plan par des polygones. Le terme pavage est… …   Wikipédia en Français

  • Pavage pentagonal — Les différents pavages pentagonaux isoédraux connus. Un pavage pentagonal est, en géométrie, un pavage du plan par des pentagones, réguliers ou non. On connait quatorze types de pavages pentagonaux isoédraux  …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”