Chebyshev rational functions

Chebyshev rational functions
This article is not about the Chebyshev rational functions used in the design of elliptic filters. For those functions, see Elliptic rational functions.
Plot of the Chebyshev rational functions for n=0,1,2,3 and 4 for x between 0.01 and 100.

In mathematics, the Chebyshev rational functions are a sequence of functions which are both rational and orthogonal. They are named after Pafnuty Chebyshev. A rational Chebyshev function of degree n is defined as:

R_n(x)\ \stackrel{\mathrm{def}}{=}\  T_n\left(\frac{x-1}{x+1}\right)

where Tn(x) is a Chebyshev polynomial of the first kind.

Contents

Properties

Many properties can be derived from the properties of the Chebyshev polynomials of the first kind. Other properties are unique to the functions themselves.

Recursion

R_{n+1}(x)=2\,\frac{x-1}{x+1}R_n(x)-R_{n-1}(x)\quad\mathrm{for\,n\ge 1}

Differential equations

(x+1)^2R_n(x)=\frac{1}{n+1}\frac{d}{dx}\,R_{n+1}(x)-\frac{1}{n-1}\frac{d}{dx}\,R_{n-1}(x)
\quad\mathrm{for\,n\ge 2}
(x+1)^2x\frac{d^2}{dx^2}\,R_n(x)+\frac{(3x+1)(x+1)}{2}\frac{d}{dx}\,R_n(x)+n^2R_{n}(x) = 0

Orthogonality

Plot of the absolute value of the seventh order (n=7) Chebyshev rational function for x between 0.01 and 100. Note that there are n zeroes arranged symmetrically about x=1 and if x0 is a zero, then 1/x0 is a zero as well. The maximum value between the zeros is unity. These properties hold for all orders.

Defining:

\omega(x) \ \stackrel{\mathrm{def}}{=}\  \frac{1}{(x+1)\sqrt{x}}

The orthogonality of the Chebyshev rational functions may be written:

\int_{0}^\infty R_m(x)\,R_n(x)\,\omega(x)\,dx=\frac{\pi c_n}{2}\delta_{nm}

where cn equals 2 for n=0 and cn equals 1 for n \ge 1 and δnm is the Kronecker delta function.

Expansion of an arbitrary function

For an arbitrary function f(x)\in L_\omega^2 the orthogonality relationship can be used to expand f(x):

f(x)=\sum_{n=0}^\infty F_n R_n(x)

where

F_n=\frac{2}{c_n\pi}\int_{0}^\infty f(x)R_n(x)\omega(x)\,dx.

Particular values

R_0(x)=1\,
R_1(x)=\frac{x-1}{x+1}\,
R_2(x)=\frac{x^2-6x+1}{(x+1)^2}\,
R_3(x)=\frac{x^3-15x^2+15x-1}{(x+1)^3}\,
R_4(x)=\frac{x^4-28x^3+70x^2-28x+1}{(x+1)^4}\,
R_n(x)=\frac{1}{(x+1)^n}\sum_{m=0}^{n} (-1)^m{2n \choose 2m}x^{n-m}\,

Partial fraction expansion

R_n(x)=\sum_{m=0}^{n} \frac{(m!)^2}{(2m)!}{n+m-1 \choose m}{n \choose m}\frac{(-4)^m}{(x+1)^m}

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Elliptic rational functions — In mathematics the elliptic rational functions are a sequence of rational functions with real coefficients. Elliptic rational functions are extensively used in the design of elliptic electronic filters. (These functions are sometimes called… …   Wikipedia

  • Chebyshev polynomials — Not to be confused with discrete Chebyshev polynomials. In mathematics the Chebyshev polynomials, named after Pafnuty Chebyshev,[1] are a sequence of orthogonal polynomials which are related to de Moivre s formula and which can be defined… …   Wikipedia

  • Pafnuty Chebyshev — Chebyshev redirects here. For other uses, see Chebyshev (disambiguation). Pafnuty Chebyshev Pafnuty Lvovich Chebyshev Born May 16, 1821 …   Wikipedia

  • List of mathematical functions — In mathematics, several functions or groups of functions are important enough to deserve their own names. This is a listing of pointers to those articles which explain these functions in more detail. There is a large theory of special functions… …   Wikipedia

  • Trigonometric functions — Cosine redirects here. For the similarity measure, see Cosine similarity. Trigonometry History Usage Functions Generalized Inverse functions …   Wikipedia

  • Continued fraction — Finite continued fraction, where a0 is an integer, any other ai are positive integers, and n is a non negative integer. In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Elliptic filter — An elliptic filter (also known as a Cauer filter, named after Wilhelm Cauer) is an electronic filter with equalized ripple (equiripple) behavior in both the passband and the stopband. The amount of ripple in each band is independently adjustable …   Wikipedia

  • List of trigonometric identities — Cosines and sines around the unit circle …   Wikipedia

  • Cubic function — This article is about cubic equations in one variable. For cubic equations in two variables, see elliptic curve. Graph of a cubic function with 3 real roots (where the curve crosses the horizontal axis where y = 0). It has 2 critical points. Here …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”