Double torus knot

Double torus knot

A double torus knot is a closed curve drawn on the surface called a double torus (think of the surface of two doughnuts stuck together). More technically, a double torus knot is the homeomorphic image of a circle in which can be realized as a subset of a genus two handlebody in . If a link is a subset of a genus two handlebody, it is a double torus link.[1]

The simplest example of a double torus knot that is not a torus knot is the figure-eight knot.

While torus knots and links are well understood and completely classified, there are many open questions about double torus knots.

Two different notations exist for describing double torus knots. The T/I notation is given in F. Norwood, Curves on Surfaces[2] and a different notation is given in P. Hill, On double-torus knots (I).[3] The big problem, solved in the case of the torus, still open in the case of the double torus, is: when do two different notations describe the same knot?

References

  1. ^ Dale Rolfsen, Knots and Links, Publish or Perish, Inc., 1976, ISBN 0-914098-16-0
  2. ^ Topology and its Applications 33 (1989) 241-246.
  3. ^ Journal of Knot Theory and its Ramifications, 1999.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Double torus — In mathematics, a double torus is a topological object formed by the connected sum of two torii. That is to say, from each of two torii the interior of a disk is removed, and the boundaries of the two disks are identified (glued together),… …   Wikipedia

  • Torus (disambiguation) — Torus or tori may refer to:In mathematics:* Torus a surface * Torus knot * Algebraic torus * Double torus * Umbilic torusIn medicine:* Torus palatinus a bony growth on the palate * Torus mandibularis a bony growth on the mandible * Torus fracture …   Wikipedia

  • List of knot theory topics — Knot theory is the study of mathematical knots. While inspired by knots which appear in daily life in shoelaces and rope, a mathematician s knot differs in that the ends are joined together so that it cannot be undone. In precise mathematical… …   Wikipedia

  • Torus — Not to be confused with Taurus (disambiguation). This article is about the surface and mathematical concept of a torus. For other uses, see Torus (disambiguation). A torus As the distance to th …   Wikipedia

  • Knot theory — A three dimensional depiction of a thickened trefoil knot, the simplest non trivial knot …   Wikipedia

  • Satellite knot — In the mathematical theory of knots, a satellite knot is a knot which contains an incompressible, non boundary parallel torus in its complement [Colin Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots , (2001),… …   Wikipedia

  • Cinquefoil knot — A cinquefoil knot. In knot theory, the cinquefoil knot, also known as Solomon s seal knot or the pentafoil knot, is one of two knots with crossing number five, the other being the three twist knot. It is listed as the 51 knot in the Alexander… …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • Genus-2 surface — A genus 2 surface. In mathematics, a genus 2 surface (also known as a double torus or two holed torus) is a surface formed by the connected sum of two tori. That is to say, from each of two tori the interior of a disk is removed, and the… …   Wikipedia

  • Manifold — For other uses, see Manifold (disambiguation). The sphere (surface of a ball) is a two dimensional manifold since it can be represented by a collection of two dimensional maps. In mathematics (specifically in differential geometry and topology),… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”